PROPERTIES
 0

 STEEL SECTIONS

 STEEL SECTIONS}

SAMPUE
MCORAW PUBLASHING COMPANY
NEW YORK

$-\left|\begin{array}{c}\text { LIBRARY } \\ \text { OF THE } \\ \text { Class } \\ \text { UNIVERSITY OF CALIFORNIA. } \\ \ldots . . .\end{array}\right|$
(2all

-

PROPERTIES

or
 STEEL SECTIONS

A REFERENCE BOOK FOR

STRUCTURAL ENGINEERS AND
ARCHITECTS

INCLUDING TABLES OF MOMENTS OF INERTIA AND RADII OF GYRATION OF BUILT SECTIONS, EXAMPLES OF SECTIONS SELECTED FROM MONUMENTAL STRUCTURES, UNIT STRESSES, SAFE LOADS FOR COLUMNS, PLATE GIRDER DESIGN, DESIGN IN TIMBER, ETC., WITH ONLY SUFFICIENT TEXT TO EXPLAIN THEIR APPLICATION

BY
JOHN C. SAMPLE, C.E., M. Arch.
Architectural Engineer, New York

NEW YORK
McGRAW PUBLISHING COMPANY
II4 Liberty Street
1905

$$
\begin{aligned}
& \text { TA }{ }^{685} \\
& \text { ph }^{2}
\end{aligned}
$$

CAMERAL

Copyright, 1905
By THE
McGRAW PUBLISHING COMPANY
New York

PREFACE
 OF THE UNIVERSITY CALIFORNI

There is a tendency at the present time to call for designs to be submitted on short notice. Should the design be properly made, it requires rapid and often laborious calculations. It is hoped the designer will be able to select directly from the tables here given such sections as will meet his special requirements, thus saving the energy ordinarily spent in preliminary figuring for more important parts of design.

A portion of the material here presented was originally prepared for the author's own use as designer for a structural steel plant. When it was decided to publish the tables additional sections were included. The aim has been to cover the particular field as thoroughly as possible without producing too large a volume. It has not been considered to be within the scope of this book to treat the subjects involved from a theoretical standpoint, only sufficient text being presented to explain the application of the tables.

All values have been calculated and checked independently, and may be relied upon as correct.

Sufficient time has been taken in preparing these tables to permit the author to add such sections as are in use. He has aimed to confine himself to those sections which are necessary to good design and such shapes as are carried in stock by most large structural steel plants, it being the desire to avoid unnecessary refinements.

Common usage will account for the appearance of some of these sections.
Properties of patented sections are omitted. They may be obtained by applying to the manufacturer.

Where possible all controverted points have been avoided. There is a diversity of practice as to how much the back to back of angles should exceed the width of the plate for plate girders and columns, the practice being about equally divided between $\frac{1}{4}{ }^{\prime \prime}$ and $\frac{l^{\prime \prime}}{2}$. The author has used $\frac{1_{4}^{\prime \prime}}{\prime \prime}$ for all sections with less than $42^{\prime \prime}$ plates, since this is on the safe side for those using $\frac{1_{2}^{\prime \prime}}{2}$. Where cover plates are not used, it is unnecessary to chip the web plate, and it is seldom necessary to chip where cover plates are used unless it be for very long web plates.

It is not intended to recommend any particular set of specifications, or to present a text on design in steel. With the exception of the chapter giving safe loads of columns, the material is general and capable of being applied to any specification.

The author acknowledges his gratitude to those who have assisted him in pro-
viding material for the chapter on Monumental Structures, pages 56 to 66 . He will appreciate suggestions tending to add to the value of future editions of the book. Chapters will be revised at intervals determined by the advance in the particular subject.

Special acknowledgment is due Mr. H. R. Bradley for carefully checking all the material.

CONTENTS

Page
MOMENT OF INERTIA AND RADII OF GYRATION -
Explanatory notes and examples of application I
Table No. i Two angles, unequal legs, long legs outstanding 4
" equal legs 6
" unequal legs, short legs outstanding 8
" "Star Struts," equal legs. 10
" " unequal legs II
Four angles, Axis AA, unequal legs, long legs outstanding 12
" " equal legs 14
" " unequal legs, short legs outstanding. 16
" Axis BB, unequal legs, long legs outstanding 17
" " equal legs 20
" " unequal legs, short legs outstanding 22
Moment of Inertia of one plate, Axis AA 23
" of one plate, Axis BB 24
" of two cover plates for angle columns 26
" of two cover plates for zee-bar columns 28
Two Angles and one plate, T-shaped section. 29
Four zee-bars and one plate 30
Two channels laced, flanges in 31
" " flanges outstanding 32
" " (flanges outstanding) and one beam 34
" " (flanges in) and one beam 38
Three beams, H-section 39
Two channels and two cover plates 40
" " one cover plate 46
One channel and one plate 49
" and one angle 50
26 5 I
VALUES OF COLUMNS FROM LARGE BUILDINGS -
28 List and properties of sections 54
Columns having one web plate 56
" two web plates 57
" three web plates. 5^{8}
Miscellaneous types 59
Page
VALUES OF TOP CHORDS FROM LARGE BRIDGES -
Table No. 29 List and properties of sections 55
Laced top and bottom, two webs 61
" " three webs 62
" " four webs 63
Cover plate on top, two webs 63
" " four webs 64
Miscellaneous types 66
UNIT STRAINS -
Strains under dynamic loads 67
Unit strains in compression members 68
Summary of compression formulæ 70
30 Values from compression formulæ, reduced to 16,000 base unit 72
Curves derived from compression formulæ, reduced to 16,000 base unit 73
31 Values corresponding to compression formulæ 74
Curves corresponding to compression formulæ 75
Railroad bridge, highway bridge, and building specifications 76
SAFE LOADS FOR COLUMNS -
32 Two angles 78
33 Four angles and an 8 -inch plate 80
34 " and a 12 -inch plate 8I
" and an 18 -inch plate 82
35 " and a 24 -inch plate 83
37 Two channels laced 84
STRESS DUE TO WEIGHT OF SECTION -
3^{8} Extreme fiber stress due to weight of angles 86
39 AREA OF ONE PLATE 87
40 AREA IN SQUARE INCHES DEDUCTED FOR ONE HOLE 90
NET AREA OF ONE ANGLE -
4 I Deducting one, two, and three $\frac{3}{4}$-inch holes 91
42 " " " 7 -inch holes 92
43 " " " i-inch holes 93
NET VALUES OF SECTIONS -
44 Net values of beams 94
45 " " channels 95
46 " " cover plates for beams and channels 96
Page
PLATE GIRDERS -
Graphics in design of plate girders 97
Three examples illustrating application of tables 99
Resistance of web plate to bending stress 100
Table No 47 Moment of inertia of one web plate for plate girders 102
48 " " of four angles deducting one hole 103
49 " " " " two holes 104
50 " " " " three holes 105
51 " of two cover plates, deducting two holes 106
TIMBER COLUMNS, BEAMS, AND FLOORING -
General notes on strength of timber 110
52 Safe working stresses for various timbers 113
53 Ultimate breaking stresses for various timbers II4
54 Safe loads for columns 115
55 " (uniformly distributed) for beams I inch thick 116
" (uniformly distributed) for beams of various thickness 117
${ }_{57}$ Safe bending moments for beams in foot-pounds 119
58 Bending moments in foot-pounds for uniform loading 120
59 Thickness of flooring for uniform loading 12I

General Notes Governing Tables

The shapes used in the tables throughout are manufactured by the Carnegie Steel Co. as given in the Pocket Companion for 1903. It has been the object to supplement the Pocket Companion and not to include any information given in it.

The values of all sections except for net values of beams, channels, and cover plates, pages $94-96$; net sections of angles, pages $91-93$; and plate girders, pages $97-109$, are based upon their gross area. Should it be required to use net sections in other cases, due allowance must be made for deductions by rivet holes.

The following notation is used throughout :
Areas of sections are square inches in cross-section.
Weights of sections are pounds per lineal foot.
Dimensions are in inches unless noted.
$L=$ unsupported or unbraced length in feet.
$l=$ unsupported or unbraced length in inches.
$x=$ unknown distance in feet to point in question.
$w=$ uniform load in pounds per lineal foot of span.
$W=$ total load in pounds.
$P=$ safe stress in pounds per square inch.
$B=$ bending moment in inch pounds.
$R=$ extreme fiber stress in pounds per square inch.
$b=$ thickness in inches.
$h=$ depth in inches.
$A=$ total area of cross-section in square inches.
$I=$ moment of inertia.
$M_{r}=$ moment of resistance in inch pounds.
$r=$ radius of gyration in inches.
$e=$ distance in inches of extreme fiber from neutral axis.
b. to $b .=$ back to back in inches.
$C=$ coefficient of strength for fiber stress of 16,000 pounds per square inch.
$S=$ section modulus.
S and C are with neutral axis perpendicular to web at center.

MOMENTS OF INERTIA AND RADII OF GYRATION OF COLUMNS AND STRUTS

The values of all sections in this chapter are based on the gross sections, no deductions being made for rivet holes. Bending produces tension in one side of a column and increases the compression in the other, but the tension is only sufficient to reduce the compression, or in rare cases to produce a slight tension. Should such a case be possible that tension determines the section, where the member has a strut action it would be necessary to use the net values of the section.

A column of such proportions should be selected as to be of nearly the same strength about both axes for the particular loading and bracing. Such relative values of l, r, and I should be examined as will show the column weakest.

The application of the tables of Moments of Inertia and Radii of Gyration is shown by the following examples. The sections will be determined in accordance with the requirements of the New York Building Law. The allowable strain in pounds per square inch for compression members, $P=15,200-58 \frac{l}{r}$. The ratio of $\frac{l}{r}$ must not exceed 120 .

In each example the unsupported length about both axes is 20 feet. To this maximum ratio of $\frac{l}{r}=120$, corresponds the minimum value of $r=\frac{l}{120}=$ $\frac{20 \times 12}{120}=2.0$. The minimum value of r may therefore be determined for this ratio of $\frac{l}{r}$ by pointing off one decimal place in the value of l in feet. By examination of the tables it is seen that a large number of sections have a value of r equal to or greater than 2.0 The sections used in the examples have values of r much greater than 2.0 , and it is important to select such sections as will give the greatest value of r for a given area, provided the requirements or conditions will permit the use of such a section.

Let $A=$ required area of column in square inches.
$W=$ total direct load in pounds.
$B=$ bending moment in inch pounds.
$P=$ safe load in pounds per square inch.
$e=$ distance in inches from the neutral axis to the extreme fiber on the side in which the bending produces compression.

The values of compound sections may be found by combining the values of elementary parts. This is illustrated by a column shown in the accompanying figure, the values of which are tabulated below. The column is composed of four angles $6 \times 4 \times \frac{5}{8}, 18 \frac{1}{4}^{\prime \prime} b$. to b, long legs outstanding, an $18^{\prime \prime} \times \frac{1_{2}^{\prime \prime}}{}$ web plate, and two $14^{\prime \prime} \times \frac{5^{\prime \prime}}{8}$ cover plates.

Section.	Area.	Table.	$\begin{aligned} & \text { I About } \\ & \text { Axis AA. } \end{aligned}$	Table.	I About Axis BB.
$4^{\text {Ls }} 6 \times 4 \times \frac{5}{8}$	23.44	6	206.13	9	1,566.08
1 Pl. $18^{\prime \prime} \times \frac{1}{2 \prime}$	9.00	12	. 19	13	243.00
2 Pls. $14^{\prime \prime} \times \frac{5}{8 \prime \prime}$	17.50	13	285.84	14	1,559.23
Totals	49.94		492.16		3,368.3 ${ }^{\text {I }}$
$r=\sqrt{\frac{I}{A}}=$			$\sqrt{\frac{492.16}{49.94}}=3$.		$\frac{3368.31}{49.94}=$

The safe direct load for this column according to the New York Building Law for an unbraced length of 20 feet is

$$
W=A\left(\mathrm{I}_{5,200}-58 \frac{l}{r}\right)=49.94\left(\mathrm{r}_{5,200}-58 \frac{240}{3.14}\right)=537,700 \text { pounds. }
$$

General form of Example I. This form is for direct loading only, i.e. the loading is balanced about any horizontal axis through the center of gravity of the column. This is a general case and applicable to all sections. The form becomes

$$
A=\frac{W}{P}=\frac{W}{{ }^{1} 5,200-58 \frac{l}{r}}
$$

General form of Example 2. This form is for combined direct load with eccentric loading or bending. This is a general case and is applicable to all sections. The form becomes

$$
A=\frac{W}{\left(15,200-58 \frac{l}{r}\right)-\frac{B e}{I}} \cdot *
$$

Example I. Required a channel column capable of carrying a direct or balanced load of 230,000 pounds. To obtain the approximate area required, assume an allowable strain of 12,000 pounds per square inch. $230,000 \div 12,000=19.2$ square inches. From the table 23 the area of two $10^{\prime \prime} 15$-pound channels and two $12^{\prime \prime} \times \frac{1^{\prime \prime}}{}$ plates $=$ 20.92 ; the least $r=3.68$. Applying the general form,

$$
A=\frac{W}{15,200-58 \frac{l}{r}}=\frac{230,000}{15,200-58 \frac{240}{3.68}}=\frac{230,000}{11,400}=20.2 .
$$

The section assumed has an excessive area of .72 square inch, and is capable of being reduced by approximately that amount.

Example 2. Required a channel column capable of carrying a balanced load of 200,000 pounds, and having in addition a bending of 120,000 inch pounds. To obtain the approximate area required, assume an allowable extreme fiber strain of 10,000 pounds per square inch for the direct load. $200,000 \div 10,000=20.0$ square inches. From the table 23 the area of two $10^{\prime \prime}{ }^{15}$-pound channels and two $12^{\prime \prime} \times{ }^{\frac{1}{2} / 1}$ plates $=$ 20.92 ; the least $r=3.68$. Turn the column so it will most effectively resist the bending, by placing the axis AA parallel to the plane of bending force. The value of I about the axis $\mathrm{AA}=464.8$. Applying the general form,
$\mathrm{A}=\frac{W}{\left(15,200-58 \frac{l}{r}\right)-\frac{B e}{I}}=\frac{200,000}{\left(15,200-58 \frac{240}{3.68}\right)-\frac{120,000 \times 5.5}{454.8}}=\frac{200,000}{10,000}=20.0$
square inches required. The section assumed has an excessive area of . 92 square inch and is capable of being reduced by approximately that amount.

* Note:- It will be seen by referring to the table of specifications under the chapter on Unit Strains that the practice varies; some add the total extreme fiber stress due to bending, while others add $\frac{3}{4}$ of the extreme fiber stress, to the direct stress.

TABLE 1

TWO ANGLES, UNEQUAL LEGS,

Size.	Total Section.		Axis BB.		Axis AA.							
			$\mathrm{o}^{\prime \prime} \mathrm{b}$. to b.	$\frac{3}{8}{ }^{\prime \prime} \mathrm{b}$. to b.		$\frac{7}{16}{ }^{\prime \prime} \mathrm{b}$. to b.						
	Weight.	Area.			I	r	I	r	I	r	I	r
$7 \times 3 \frac{1}{2} \times \frac{3}{4}$	49.8	14.62	12.16	-91	172.34	3.43	187.2 I	3.58	189.79	3.60		
$\times \frac{11}{16}$	46.0	13.50	11.38	. 92	158.20	3.42	171.84	3.57	I74.20	$3 \cdot 59$		
$\times \frac{5}{8}$	42.0	12.34	10.56	-93	143.22	3.41	155.55	$3 \cdot 55$	157.69	$3 \cdot 57$		
$\times \frac{9}{16}$	38.0	II.18	9.72	-93	129.06	3.40	140.14	$3 \cdot 54$	142.06	$3 \cdot 56$		
$\times \frac{1}{2}$	34.0	10.00	8.82	. 94	II4.83	3.39	124.67	3.53	I26.38	3.55		
$\times \frac{7}{16}$	30.0	8.80	7.90	. 95	100.12	3.37	108.68	3.5 I	IIO.17	$3 \cdot 54$		
					$\mathrm{o}^{\prime \prime} \mathrm{b}$. to b.		$\frac{1}{4}^{\prime \prime}$ b. to b.		$\frac{5}{16}{ }^{\prime \prime} \mathrm{b}$. to b .			
$6 \times 4 \times \frac{3}{4}$	47.2	13.88	17.36	1.12	109.07	2.80	116.50	2.90	118.43	2.92		
$\times \frac{11}{16}$	43.6	12.82	16.22	I.I3	100.04	2.79	106.85	2.89	108.61	2.91		
$\times \frac{5}{8}$	40.0	11.72	15.04	1.13	90.44	2.78	96.57	2.87	98.16	2.89		
$\times \frac{9}{16}$	36.2	10.62	13.82	1.14	81.43	2.77	86.93	2.86	88.36	2.88		
$\times \frac{1}{2}$	32.4	9.50	12.54	I.I5	72.42	2.76	77.30	2.85	78.56	2.88		
$\times \frac{7}{16}$	28.6	8.36	11.20	1.16	63.04	2.75	67.26	2.84	68.36	2.86		
$\times \frac{3}{8}$	24.6	7.22	9.80	1.17	54.1 1	2.74	57.73	2.83	58.67	2.85		
$5 \times 3 \frac{1}{2} \times \frac{5}{8}$.	33.6	9.84	9.66	. 99	52.50	2.31	56.83	2.40	57.96	2.43		
$\times \frac{9}{16}$	30.4	8.94	8.90	1.00	47.29	2.30	51.19	2.39	52.20	2.42		
$\times \frac{1}{2}$	27.2	8.00	8.10	I.OI	42.02	2.29	$45 \cdot 47$	2.38	46.37	2.41		
$\times \frac{7}{16}$	24.0	7.06	7.26	I.OI	36.56	2.28	$39 \cdot 54$	2.37	40.33	2.39		
$\times \frac{3}{8}$	20.8	6.10	6.36	1.02	31.37	2.27	33.92	2.36	34.59	2.38		
$\times \frac{5}{16}$	17.4	5.12	$5 \cdot 44$	1.03	26.14	2.26	28.26	2.35	28.8 I	2.37		
$4 \times 3 \times \frac{9}{16}$	24.6	7.24	$5 \cdot 32$. 86	24.29	1. 83	26.85	1.93	27.53	1.95		
$\times \frac{1}{2}$	22.2	6.50	4.84	. 86	21.60	I. 82	23.86	1.92	24.46	1.94		
$\times \frac{7}{16}$	19.6	5.74	$4 \cdot 36$. 87	18.74	I.8I	20.70	1.90	21.21	1.92		
$\times \frac{3}{8}$	17.0	4.96	3.84	. 88	16.05	1.80	17.71	I. 89	18.15	1.91		
$\times \frac{5}{16}$	14.2	4.18	$3 \cdot 30$. 89	I3.40	I. 79	14.78	1.88	15.14	1.90		
$3 \times 2 \frac{1}{2} \times \frac{1}{2}$	17.0	5.00	2.60.	$\cdot 72$	9.16	I. 35	10.49	1.45	10.84	I. 47		
$\times \frac{7}{16}$	15.2	4.44	2.36	$\cdot 73$	8.02	I. 34	9.18	I. 44	9.49	I. 46		
$\times \frac{3}{8}$	13.2	3.84	2.08	$\cdot 74$	6.86	I. 34	7.84	I. 43	8.10	1.45		
$\times \frac{5}{16}$	II .0	3.24	r.80	.74	5.64	I. 32	6.45	I. 41	6.66	I. 43		
$\times \frac{1}{4}$	9.0	2.62	1.48	. 75	$4 \cdot 5 \mathrm{I}$	1.31	$5 \cdot 15$	1.40	$5 \cdot 32$	I. 42		
$2 \frac{1}{2} \times 2 \times \frac{3}{8}$	10.6	3.10	1.02	. 58	3.96	1.I3	4.65	1.22	4.84	I. 25		
$\times \frac{5}{16}$	9.0	2.62	. 90	. 58	$3 \cdot 30$	1.12	3.87	1.22	4.03	1. 24		
$\times \frac{1}{4}$	7.4	2.12	. 74	. 59	2.62	I.II	3.07	1.20	3.20	1.23		
$\times \frac{3}{16}$	5.6	1.62	.58	. 60	1.96	1.10	2.29	1. 19	2.38	I. 21		

(4)

LONG LEGS OUTSTANDING

Axis AA.									
$\frac{1}{2}{ }^{\prime \prime} \mathrm{b}$. to b.		$5^{\prime \prime} \mathrm{b}$. to b.		$3^{\prime \prime}{ }^{\prime \prime} \mathrm{b}$. to b.		$\frac{7}{8}{ }^{\prime \prime} \mathrm{b}$. to b .		I b. to b.	
1	r	I	r	I	r	I	r	I	r
192.40	3.63	197.71	3.68	203.12	3.73	208.65	3.78	214.30	3.83
176.59	3.62	181.46	3.67	186.42	3.72	191.50	3.77	196.68	3.82
159.85	3.60	164.25	3.65	168.74	3.70	173.34	3.75	178.02	3.80
144.01	3.59	147.97	3.64	${ }^{1} 52.01$	3.69	${ }^{1} 56.14$	3.74	160.36	3.79
128.10	3.58	131.62	3.63	135.21	3.68	138.88	3.73	142.63	3.78
111.67	3.56	114.73	3.61	117.86	3.66	121.05	3.71	124.32	3.76
$z^{\prime \prime}$ b. to b.		$\frac{7}{16}{ }^{\prime \prime} \mathrm{b}$. to b .		$\frac{1_{2}^{\prime \prime}}{} \mathrm{b}$. to b.		$\frac{5}{8 \prime \prime} \mathrm{~b}$. to b .		$3^{\prime \prime}{ }^{\prime \prime} \mathrm{b}$. to b.	
120.38	2.95	122.36	2.97	124.37	2.99	128.47	3.04	132.67	3.09
110.40	2.93	II 2.21	2.96	114.05	2.98	117.80	3.03	121.65	3.08
99.77	2.92	ICI.41	2.94	103.07	2.97	106.45	3.01	109.93	3.06
89.80	2.91	91.27	2.93	92.76	2.96	95.80	3.00	98.93	3.05
79.84	2.90	81.15	2.92	82.47	2.95	85.16	2.99	87.94	3.04
69.47	2.88	70.60	2.91	71.75	2.93	74.09	2.98	76.50	3.03
59.62	2.87	60.59	2.90	61.57	2.92	63.57	2.97	65.63	3.02
59.12	2.45	60.29	2.48	61.48	2.50	63.91	2.55	66.43	2.60
53.24	2.44	54.29	2.46	$55 \cdot 36$	2.49	57.55	2.54	59.8 I	2.59
47.29	2.43	48.22	2.46	49.16	2.48	51.11	2.53	53.11	2.58
41.12	2.41	41.93	2.44	42.75	2.46	44.44	2.51	46.18	2.56
35.27	2.40	35.96	2.43	36.66	2.45	38.11	2.50	39.60	2.55
29.38	2.40	29.95	2.42	30.53	2.44	31.73	2.49	32.97	2.54
28.21	1.97	28.92	2.00	29.63	2.02	31.11	2.07	32.64	2.12
25.07	1.96	25.69	1.99	26.33	2.01	27.64	2.06	29.00	2.11
21.74	1.95	22.28	1.97	22.83	I. 99	23.96	2.04	25.14	2.09
18.60	1.94	19.06	1.96	19.53	1.98	20.50	2.03	21.51	2.08
I5.52	1.93	15.90	1.95	16.29	1.97	17.10	2.02	17.93	2.07
I 1. 21	1.50	11.59	1.52	11.97	1.55	12.77	1.60	13.61	1. 65
9.81	1.49	10.14	1.51	10.48	1.54	11.18	1.59	11.91	1. 64
8.38	1.48	8.66	1.50	8.94	1.53	9.54	1. 58	10.16	1.63
6.89	1.46	7.12	1.48	$7 \cdot 35$	1.51	7.84	1.56	8.36	1.61
$5 \cdot 50$	I. 45	5.68	I. 47	5.87	1.50	6.26	I. 55	6.67	1.60
5.03	1.27	5.23	1.30	$5 \cdot 44$	1.32	5.87	1.38	6.32	1.43
4.19	1.26	$4 \cdot 35$	1.29	$4 \cdot 52$	1.31	4.88	1.36	$5 \cdot 26$	I. 42
3.33	1.25	3.46	1.28	3.59	1.30	3.88	1.35	4.18	1.40
2.47	1.24	2.57	1.26	2.67	I. 28	2.88	1.33	3.11	1.38

TABLE 2

Size.	Total Section.		Axis BB.		Axis AA.							
			$\mathrm{o}^{\prime \prime} \mathrm{b}$. to b.	$\frac{3}{8}^{\prime \prime} \mathrm{b}$. to b.		$\frac{7}{16}{ }^{\prime \prime} \mathrm{b}$. to b.						
	Weight.	Area.			I	r	I	r	I	r	I	r
$8 \times 8 \times 1$	102.0	30.00	177.96	2.44	346.47	3.40	374.18	3.53	379.01	$3 \cdot 55$		
$\times \frac{15}{16}$	96.0	28.24	168.66	2.44	323.29	3.38	349.06	$3 \cdot 52$	353.55	$3 \cdot 54$		
+ 7	90.0	26.46	I59.16	2.45	301.58	3.38	325.53	$3 \cdot 51$	329.70	$3 \cdot 53$		
$\times \frac{13}{16}$	84.0	24.68	149.42	2.46	279.98	3.37	302.13	3.50	305.99	$3 \cdot 52$		
$\times \frac{3}{4}$	77.8	22.88	I 39.48	2.47.	$25^{8.42}$	3.36	278.79	3.49	282.34	$3 \cdot 5 \mathrm{I}$		
$\times \frac{11}{16}$	71.6	21.06	129.28	2.48	235.90	3.35	254.4I	3.48	257.63	3.50		
$\times \frac{5}{8}$	65.4	19.22	I 18.84	2.49	214.42	3.34	231.17	3.47	234.09	3.49		
$\times \frac{9}{16}$	59.0	17.36	108.18	2.50	192.97	3.33	207.97	$3 \cdot 46$	210.58	3.48		
$\times \frac{1}{2}$	52.8	15.50	97.26	2.50	171.60	3.33	184.87	3.45	187.19	3.48		
$6 \times 6 \times \frac{3}{4}$	57.4	16.88	56.30	1. 83	109.78	2.55	121.64	2.68	123.73	2.71		
$\times \frac{11}{16}$	53.0	15.56	52.38	I. 83	100.03	2.54	I 10.79	2.67	I 12.69	2.69		
$\times \frac{5}{8}$	48.4	14.22	48.32	I. 84	90.88	2.53	100.60	2.66	102.32	2.68		
$\times \frac{9}{16}$	43.8	12.86	44.14	I. 85	81. 74	2.52	90.44	2.65	91.98	2.67		
$\times \frac{1}{2}$	39.2	II. 50	39.82	1. 86	72.28	2.51	79.93	2.64	81.28	2.66		
$\times \frac{7}{16}$	34.4	10.12	$35 \cdot 36$	I. 87	63.25	2.50	69.90	2.63	71.08	2.65		
$\times \frac{3}{8}$	29.6	8.72	30.78	1. 88	54.23	2.49	59.90	2.62	60.91	2.64		
					$\mathrm{o}^{\prime \prime} \mathrm{b}$. to b.		$\frac{1}{4 \prime}^{\prime \prime} \mathrm{b}$. to b.		$\frac{5}{16}{ }^{\prime \prime}$ b. to b.			
$4 \times 4 \times \frac{5}{8}$	31.4	9.22	13.32	1.20	27.27	1.72	30.25	1.81	31.04	1. 83		
$\times \frac{9}{16}$	28.6	8.36	12.24	I. 21	24.48	1.71	27.14	1.80	27.84	I. 83		
$\times \frac{1}{2}$	25.6	7.50	11.12	I. 22	21.56	1.70	23.89	1.78	24.51	I.8I		
$\times \frac{7}{16}$	22.6	6.62	9.94	1.23	18.85	1.69	20.87	1.78	21.41	I. 80		
$\times \frac{3}{8}$	19.6	5.72	8.72	1.23	16.15	1. 68	17.87	1.77	18.33	I. 79		
$\times \frac{5}{16}$	16.4	4.80	$7 \cdot 42$	1.24	13.44	1.67	14.86	1.76	15.24	1. 78		
$3 \times 3 \times \frac{1}{2}$	18.8	5.50	4.44	. 90	9.20	1.29	10.56	1. 39	10.93	I.4I		
$\times \frac{7}{16}$	16.6	4.86	3.98	.91	8.00	1.28	9.19	1.37	9.51	1.40		
$\times \frac{3}{8}$	14.4	4.22	$3 \cdot 52$. 91	6.86	1.28	7.87	1.37	8.14	I. 39		
$\times \frac{5}{16}$	12.2	3.56	3.02	.92	$5 \cdot 7 \mathrm{I}$	1.27	6.54	1.36	6.77	I. 38		
$\times \frac{1}{4}$	9.8	2.88	2.48	-93	4.51	1.25	5.16	I. 34	$5 \cdot 34$	I. 36		
$2 \frac{1}{2} \times 2 \frac{1}{2} \times \frac{7}{16}$	13.6	4.00	2.22	- 74	4.65	1.08	$5 \cdot 50$	1.17	5.73	1.20		
$\times \frac{3}{8}$	11.8	3.46	r. 96	-75	3.96	1.07	4.67	1.16	4.86	I.19		
$\times \frac{5}{16}$	10.0	2.94	1.70	.76	$3 \cdot 3 \mathrm{I}$	1.06	3.90	I. 5	4.06	1.18		
$\times \frac{1}{4}$	8.2	2.38	1.40	$\cdot 77$	2.63	1.05	3.10	1.14	3.23	1.16		
$\times \frac{3}{16}$	6.2	1.80	1.10	.78	1.96	I. 04	2.30	I.I3	2.39	1.15		
$2 \times 2 \times \frac{5}{16}$	8.0	2.30	. 84	. 60	1.70	. 86	2.08	$\cdot 95$	2.19	.98.		
$\times \frac{1}{4}$	6.4	1.88	. 70	.6I	1.35	. 85	1.66	-94	1.75	.96		
$\times \frac{3}{16}$	5.0	I. 44	. 56	. 62	1.03	.85	I. 26	. 93	1. 32	.96		

EQUAL LEGS

Axis AA.									
$\frac{1}{2}{ }^{\prime \prime} \mathrm{b}$. to b.		$\frac{5}{8 \prime}{ }^{\prime \prime} \mathrm{b}$. to b.		$\frac{3}{4}^{\prime \prime}$ b. to b.		$\frac{7}{8}{ }^{\prime \prime}$ b. to b.		$\mathrm{I}^{\prime \prime} \mathrm{b}$. to b.	
I	r	1	r	1	r	I	r	I	r
383.89	3.58	393.83	3.62	404.01	3.67	414.42	3.72	425.07	3.76
358.10	$3 \cdot 56$	$367 \cdot 35$	3.61	376.82	3.65	386.52	3.70	396.43	3.75
333.93	$3 \cdot 55$	342.53	3.60	351.34	3.64	360.36	3.69	369.58	3.74
309.90	$3 \cdot 54$	317.86	3.59	326.02	3.63	$334 \cdot 37$	3.68	342.91	3.73
285.93	$3 \cdot 54$	293.26	3.58	300.76	3.63	308.44	3.67	316.31	3.72
260.91	$3 \cdot 52$	267.57	$3 \cdot 56$	274.40	3.61	281. 39	3.66	288.55	3.70
237.05	$3 \cdot 51$	243.08	3.56	249.27	3.60	255.60	3.65	262.08	3.69
213.24	$3 \cdot 50$	218.64	$3 \cdot 55$	224.18	3.59	229.86	3.64	235.67	3.68
189.54	3.50	194.33	$3 \cdot 54$	199.24	3.59	204.27	3.63	209.42	3.68
125.86	2.73	130.21	2.78	134.69	2.82	I 39.30	2.87	144.05	2.92
114.62	2.71	118.57	2.76	122.64	2.81	126.84	2.86	131.15	2.90
104.07	2.71	107.64	2.75	111.33	2.80	115.13	2.85	119.03	2.89
93.54	2.70	96.74	2.74	100.04	2.79	103.45	2.84	106.95	2.88
82.66	2.68	85.48	2.73	88.38	2.77	91.38	2.82	94.47	2.87
72.28	2.67	74.73	2.72	77.27	2.76	79.88	2.8 I	82.58	2.86
61.93	2.66	64.02	2.71	66.18	2.75	68.41	2.80	70.71	2.85
$\frac{3}{8}{ }^{\prime \prime} \mathrm{b}$.	b.	${ }^{\frac{7}{16}}{ }^{\prime \prime}{ }^{\prime \prime} \mathrm{b}$	b.	${ }^{\frac{1}{2}}{ }^{\prime \prime} \mathrm{b}$		$\frac{5}{8 \prime}{ }^{\prime \prime} \mathrm{b}$		$3^{\frac{3}{4}}{ }^{\prime \prime} \mathrm{b}$	
31.85	1.86	32.67	1.88	33.52	1.91	35.26	1.96	37.07	2.01
28.57	1.85	29.30	1. 87	30.06	1.90	3 x .62	1.94 .	33.24	1.99
25.15	1.83	25.79	1.85	26.46	1.88	27.83	1.93	29.26	1.97
21.96	1.82	22.52	1. 84	23.10	1.87	24.29	1.92	$25 \cdot 54$	1.96
18.80	I.8I	19.28	I. 84	19.77	1.86	20.79	1.91	21.85	1.95
15.63	I 80	16.02	1.83	16.43	1. 85	17.27	1.90	18.15	1.94
11.31	1.43	11.70	1.46	12.10	1.48	12.93	1.53	13.8 I	1.58
9.83	1.42	10.17	1. 45	10.52	1.47	II. 24	1.52	12.00	1. 57
8.42	1.41	8.71	1.44	9.00	1.46	9.62	1. 51	10.27	1.56
7.00	1.40	7.24	1.43	$7 \cdot 49$	1.45	8.00	1.50	8.54	1.55
$5 \cdot 5^{2}$	1.38	$5 \cdot 71$	1.41	5.90	1.43	6.31	I. 48	6.73	1.53
5.96	1.22	6.21	I. 25	6.46	1.27	6.99	1.32	$7 \cdot 56$	1.37
5.07	1.21	5.27	1.23	5.49	1.26	5.94	1.31	6.42	1.36
4.23	1.20	4.40	1.22	4.58	1.25	4.96	1.30	$5 \cdot 36$	1.35
$3 \cdot 36$	1.19	3.50	1.21	3.64	1.24	3.94	1.29	4.25	1.34
2.49	1.18	2.59	1.20	2.69	1.22	2.91	1.27	3.14	1. 32
2.30	1.00	2.42	- 1.03	2.54	1.05	2.80	1.10	3.07	1.16
1. 84	. 99	1.93	I. 01	2.03	1.04	2.23	1.09	2.45	1.14
I. 39	. 98	1. 46	I.OI	1. 53	I. 03	1.68	1.08	1. 85	I. 13

TWO ANGLES, UNEQUAL

Size.	Total Section.		Axis BB.		Axis AA.							
			$\mathrm{o}^{\prime \prime} \mathrm{b}$. to b .	$\frac{3}{8}{ }^{\prime \prime} \mathrm{b}$. to b.		$\frac{7}{16}{ }^{\prime \prime} \mathrm{b}$. to b.						
	Weight.	Area.			1	r	I	r	I	r	I	r
$7 \times 3 \frac{1}{2} \times \frac{3}{4}$	49.8	14.62	71.98	2.22	23.23	1.26	28.51	1.40	29.49	1.42		
$\times \frac{11}{16}$	46.0	13.50	66.94	2.23	21.13	1.25	25.91	1.39	26.80	1.41		
$\times \frac{5}{8}$	42.0	12.34	61.72	2.24	18.86	I. 24	23.09	1.37	23.87	I. 39		
$\times \frac{9}{16}$	38.0	II.18	56.36	2.25	16.88	1.23	20.62	1. 36	21.32	1. 38		
$\times \frac{1}{2}$	34.0	10.00	50.82	2.25	14.90	1.22	18.18	I. 35	18.79	1.37		
$\times \frac{7}{16}$	30.0	8.80	45.12	2.26	12.85	I. 21	${ }^{1} 5.63$	1.33	16.16	I. 35		
					$\mathrm{o}^{\prime \prime} \mathrm{b}$. to b.		$\frac{1}{4}^{\prime \prime}$ b. to b.		$\frac{5}{16^{\prime \prime} \mathrm{b} . \text { to b. }}$			
$6 \times 4 \times \frac{3}{4}$	47.2	13.88	49.02	1.88	33.55	1. 55	37.5I	1.64	38.57	1. 67		
$\times \frac{11}{16}$	43.6	12.82	45.64	1.89	30.62	I. 55	34.22	1.63	35.18	1. 66		
$\times \frac{5}{8}$	40.0	11.72	42.14	1.90	27.47	1.53	30.67	1.62	31.53	1. 64		
$\times \frac{9}{16}$	36.2	10.62	38.52	1.90	24.65	1.52	27.50	1.61	28.26	1. 63		
$\times \frac{1}{2}$	32.4	9.50	34.80	I. 91	21.85	1. 52	24.35	1.60	25.02	1. 62		
$\times \frac{7}{16}$	28.6	8.36	30.92	1.92	18.90	1.50	21.04	1.59	21.62	1.61		
$\times \frac{3}{8}$	24.6	7.22	26.94	1.93	16.18	1.50	17.99	1. 58	18.48	1.60		
$5 \times 3 \frac{1}{2} \times \frac{5}{8}$	33.6	9.84	24.06	1.56	18.54	1.37	21.03	1.46	21.70	I. 49		
$\times \frac{9}{16}$	30.4	8.94	22.06	1.57	16.63	1.36	18.85	1.45	19.45	1.47		
$\times \frac{1}{2}$	27.2	8.00	19.98	1.58	14.72	1. 36	16.67	1. 44	17.19	1.47		
$\times \frac{7}{16}$	24.0	7.06	17.80	1. 59	12.73	I. 34	14.39	1. 43	14.84	I. 45		
$\times \frac{3}{8}$	20.8	6.10	15.56	1.60	10.87	1. 34	12.28	1.42	12.66	1.44		
$\times \frac{5}{16}$	17.4	5.12	13.20	1.61	9.05	I. 33	10.21	1.4I	10.52	I. 43		
$4 \times 3 \times \frac{9}{16}$	24.6	7.24	11.10	1.24	10.55	1.21	12.20	1.30	12.65	I. 32		
$\times \frac{1}{2}$	22.2	6.50	10.10	1.25	9.32	1.20	10.77	1.29	II.16	I.31		
$\times \frac{7}{16}$	19.6	$5 \cdot 74$	9.04	1.25	8.03	I. 18	9.27	1.27	9.61	I. 29		
$\times \frac{3}{8}$	17.0	4.96	7.92	1.26	6.86	1.18	7.90	1.26	8.19	1.28		
$\times \frac{5}{16}$	14.2	4.18	6.76	1.27	5.71	I. 17	6.57	1.25	6.81	I. 28		
$3 \times 2 \frac{1}{2} \times \frac{1}{2}$	17.0	5.00	4.16	.91	5.41	1.04	6.43	1.13	6.71	1.16		
$\times \frac{7}{16}$	15.2	4.44	3.76	.92	$4 \cdot 73$	1.03	5.61	1.12	5.85	I. 15		
$\times \frac{3}{8}$	13.2	3.84	$3 \cdot 32$.93	4.02	I. 02	4.76	I.II	4.96	1.14		
$\times \frac{5}{16}$	II. 0	3.24	2.84	$\cdot 94$	$3 \cdot 30$	1.01	3.90	1.10	4.07	1.12		
$\times \frac{1}{4}$	9.0	2.62	2.34	. 95	2.62	1.00	3.09	1.09	3.23	I.II		
$2 \frac{1}{2} \times 2 \times \frac{3}{8}$	10.6	3.10	1.82	. 77	2.06	. 82	2.56	.91	2.70	. 93		
$\times \frac{5}{16}$	9.0	2.62	1. 58	. 78	1.72	.81	2.13	. 90	2.24	. 93		
$\times \frac{1}{4}$	7.4	2.12	1.30	. 78	1. 36	.80	1. 68	. 89	1.77	.91		
$\times \frac{3}{16}$	5.6	r. 62	1.02	. 79	I.co	-79	1.23	. 87	1.30	. 90		

LEGS, SHORT LEGS OUTSTANDING

Axis AA.									
$\frac{1}{2}{ }^{\prime \prime} \mathrm{b}$. to b.		$5^{\prime \prime}$ ' b. to b.		$3^{\prime \prime}{ }^{\prime \prime} \mathrm{b}$. to b.		$\frac{7}{8}^{\prime \prime} \mathrm{b}$. to b.		$\mathrm{I}^{\prime \prime} \mathrm{b}$. to b.	
I	r	I	r	I	r	I	r	I	r
30.50	1.44	32.60	1.49	34.82	1.54	37.15	1.59	39.60	1. 55
27.72	I. 43	29.62	1. 48	31.64	I. 53	33.76	1.58	35.98	r. 63
24.69	I. 41	26.39	I. 46	28.18	1.51	30.07	1.56	32.06	1.61
22.05	1.40	23.56	1.45	25.16	1.50	26.84	1.55	28.61	1.60
19.43	1.39	20.76	1.44	22.16	I. 49	23.64	1. 54	25.20	1. 59
16.70	1.38	17.83	1.42	19.04	1.47	20.31	1.52	2 I .65	1.57
$3^{\prime \prime}{ }^{\prime \prime} \mathrm{b}$.	o b.	$\frac{7}{16}{ }^{\prime \prime} \mathrm{b}$	b.	$\frac{1}{2}{ }^{\prime \prime} \mathrm{b}$	a b.	$\frac{5}{8 \prime}{ }^{\prime \prime} \mathrm{b}$	b.	$3^{3 \prime}$ b	b.
39.66	1.69	40.77	1.71	41.91	1.74	44.27	1.79	46.74	1.84
36.17	1. 68	37.18	1.70	38.22	1.73	40.37	1.77	42.62	1.82
32.41	1. 66	33.31	1.69	34.24	1.71	36.16	1.76	-38.18	1.80
29.05	1. 65	29.85	1.68	30.68	1.70	32.39	1.75	34.19	1.79
25.71	1.65	26.42	ェ. 67	27.15	1. 69	28.66	1.74	30.24	1.78
22.21	1. 63	22.82	1. 65	23.44	1. 67	24.74	1.72	26.10	1.77
18.98	1. 62	19.49	1. 64	20.02	1.67	21.13	1.71	22.28	1.76
22.39	1.51	23.10	1. 53	23.83	1. 56	25.34	1.60	26.94	1.65
20.06	1.50	20.70	1. 52	21.35	1.55	22.70	I. 59	24.12	1. 64
17.74	1.49	18.29	1.51	18.86	1. 54	20.06	1.58	21.31	1.63
15.30	1.47	15.78	1.50	16.27	1.52	17.30	1.57	18.38	1.61
13.05	1. 46	${ }^{1} 3.46$	1.49	13.88	1.51	14.75	1.55	15.66	1.60
10.85	I. 46	II.I8	1.48	11.52	1.50	12.24	I. 55	13.00	1.59
13.11	1.35	13.59	1.37	14.08	1.39	15.10	1.44	16.18	1.50
11.57	1. 33	I 1.99	1. 36	12.42	I. 38	13.32	1.43	14.28	1.48
9.96	1.32	10.32	1.34	10.69	1. 36	II. 46	1.41	12.28	1.46
8.48	I.3I	8.79	1. 33	9.10	I. 35	9.76	1.40	10.46	1.45
7.05	1.30	$7 \cdot 30$	1.32	$7 \cdot 56$	I. 35	8.11	1.39	8.68	1.44
6.99	1.18	7.29	1.2I	7.60	1.23	8.24	1.28	8.93	1.34
6.10	1.17	6.36	1.20	6.62	1.22	7.19	1.27	7.78	1.32
5.17	1.16	$5 \cdot 39$	1.18	5.62	1.2I	6.09	1.26	6.60	1.31
4.24	1.14	$4 \cdot 42$	1.17	4.60	1.19	4.99	1.24	$5 \cdot 4 \mathrm{I}$	1.29
$3 \cdot 36$	1.13	3.50	I. 16	3.65	1.18	3.96	1.23	4.29	1.28
2.85	. 96	3.00	.98	3.16	I.OI	3.49	1.06	3.85	I.II
2.36	. 95	2.49	. 97	2.62	1.00	2.89	1.05	3.19	1.10
1.86	. 94	1.96	.96	2.06	. 99	2.28	1.04	2.51	1.09
1.37	.92	1.44	. 94	1.52	. 97	1. 68	1.02	1.85	1.07

TABLE 4

Size.	Total Section.		Axis CC.		Axis Ad.
	Weight.	Area.	I	r	
$8 \times 8 \times 1$	102.0	30.00	282.50	3.07	For I and r about axis AA, see Table 2.
$\times \frac{15}{16}$	96.0	28.24	268.02	3.08	
$\times \frac{7}{8}$	90.0	26.46	253.14	3.09	
$\times \frac{13}{16}$	84.0	24.68	237.87	3.10	
$\times \frac{3}{4}$	77.8	22.88	222.20	3.12	
$\times \frac{11}{16}$	71.6	21.06	206.12	3.13	
$\times \frac{5}{8}$	65.4	19.22	189.61	3.14	
$\times \frac{9}{16}$	59.0	17.36	172.69	3.15	
$\times \frac{1}{2}$	52.8	15.50	${ }^{1} 55.32$	3.17	
$6 \times 6 \times \frac{3}{4}$	57.4	${ }^{1} 6.88$	89.39	2.30	
$\times \frac{11}{16}$	53.0	15.56	83.25	2.31	
$\times \frac{5}{8}$	48.4	14.22	76.89	2.33	
$\times \frac{9}{16}$	43.8	12.86	70.31	2.34	
$\times \frac{1}{2}$	39.2	11.50	63.49	2.35	
$\times \frac{7}{16}$	34.4	10.12	56.44	2.36	
$\times \frac{3}{8}$	29.6	8.72	49.14	2.37	
$4 \times 4 \times \frac{5}{8}$	31.4	9.22	21.04	1.51	
$\times \frac{9}{16}$	28.6	8.36	19.40	1.52	
$\times \frac{1}{2}$	25.6	7.50	17.66	1.53	
$\times \frac{7}{16}$	22.6	6.62	15.82	1.55	
$\times \frac{3}{8}$	19.6	$5 \cdot 72$	13.89	1.56	-
$\times \frac{5}{16}$	16.4	4.80	I 1.85	$\text { I. } 57$	-
$3 \times 3 \times \frac{1}{2}$	18.8	5.50	6.99	1.13	.
$\times \frac{7}{16}$	16.6	4.86	6.31	1.14	
$\times \frac{3}{8}$	14.4	4.22	$5 \cdot 59$	1.15	
$\times \frac{5}{16}$	12.2	3.56	4.8 I	1.16	
$\times \frac{1}{4}$	9.8	2.88	3.97	1.17	
$2 \frac{1}{2} \times 2 \frac{1}{2} \times \frac{7}{16}$	13.6	4.00	$3 \cdot 49$. 93	
$\times \frac{3}{8}$	I 1.8	$3 \cdot 46$	3.11	. 95	
$\times \frac{5}{16}$	10.0	2.94	2.69	. 96	
$\times \frac{1}{4}$	8.2	2.38	2.24	. 97	
$\times \frac{3}{16}$	6.2	1.80	1.74	. 98	
$2 \times 2 \times \frac{5}{16}$	8.0	2.30	1.32	.76	
$\times \frac{1}{4}$	6.4	I. 88	1.10	.77	
$\times \frac{3}{16}$	5.0	1.44	. 87	.78	

(IO)

TABLE 5

STAR STRUTS
TWO ANGLES, UNEQUAL LEGS

Size.	Total Section.		Axis CC.		Axes AA and RB.
	Weight.	Area.	I	r	
$6 \times 4 \times \frac{5}{8}$	40.0	I 1.72	48.97	2.04	
$\times \frac{9}{16}$	36.2	10.62	44.85	2.06	
$\times \frac{1}{2}$	32.4	9.50	40.57	2.07	
$\times \frac{7}{16}$	28.6	8.36	36.13	2.08	
$\times \frac{3}{8}$	24.6	7.22	31.52	2.09	
$4 \times 3 \times \frac{1}{2}$	22.2	6.50	12.32	r. 38	For I and r about axis AA, see Table 3 .
$\times \frac{7}{16}$	19.6	5.74	1 I .07	I. 39	
$\times \frac{3}{8}$	17.0	4.96	9.74	1.40	For I and r about axis $B B$, see
$\times \frac{5}{16}$	14.2	4.18	8.33	1.41	Table r.
$3 \times 2 \frac{1}{2} \times \frac{7}{16}$	15.2	4.44	4.90	1.05	
$\times \frac{3}{8}$	13.2	3.84	$4 \cdot 35$	1.06	
$\times \frac{5}{16}$	11.0	3.24	3.75	1.08	
$\times \frac{1}{4}$	9.0	2.62	3.10	1.00	

TABLE 6

Size.	Total Section.		Axis AA.					
			$\frac{3}{8 \prime}{ }^{\prime \prime} \mathrm{b}$. to b.		$\frac{7}{16}^{\prime \prime} \mathrm{b}$. to b.		$\frac{1}{2}{ }^{\prime \prime} \mathrm{b}$. to b.	
	Weight.	Area.	1	r	I	r	I	r
$\begin{array}{r} 7 \times 3 \frac{1}{2} \times \frac{3}{4} \\ \times \frac{11}{16} \\ \times \frac{5}{8} \\ \times \frac{9}{16} \\ \times \frac{1}{2} \\ \times \frac{7}{16} \end{array}$	99.6	29.24	374.43	3.58	379.59	3.60	384.81	3.63
	92.0	27.00	343.67	$3 \cdot 57$	348.40	3.59	353.19	3.62
	84.0	24.68	311.10	3.55	315.38	$3 \cdot 57$	319.71	3.60
	76.0	22.36	280.28	$3 \cdot 54$	284.13	$3 \cdot 56$	288.02	$3 \cdot 59$
	68.0	20.00	249.34	3.53	252.75	3.55	256.21	$3 \cdot 58$
	60.0	17.60	$217 \cdot 36$	$3 \cdot 51$	220.33	$3 \cdot 54$	223.34	$3 \cdot 56$
			$1^{\prime \prime}{ }^{\prime \prime} \mathrm{b}$. to b.		$\frac{5}{16}^{\prime \prime} \mathrm{b}$. to b .		$\frac{3^{\prime \prime}}{}{ }^{\prime \prime} \mathrm{b}$. to b.	
$6 \times 4 \times \frac{3}{4}$	94.4	27.76	$233.01 \quad 2.90$		$\begin{array}{l\|l} 236.86 & 2.92 \end{array}$		$\begin{array}{l\|l} 240.77 & 2.95 \end{array}$	
$\times \frac{11}{16}$	87.2	25.64	213.69 2.89	2.89	217.22 2.91		$220.79 \quad 2.93$	
$\times \frac{5}{8}$	80.0	23.44	193.14		196.3I 2.89		199.54	
$\times \frac{9}{16}$	72.4	21.24	$173.86-2.86$		176.711		179.61	
$\times \frac{1}{2}$	64.8	19.00	154.59 2.85		157.12 2.88		159.692 .90	
$\times \frac{7}{16}$	57.2	16.72	I 34.53 2.84		${ }^{1} 36.72$ 2.86		138.95 2.88	
$\times \frac{3}{8}$	49.2	14.44	1 15.46	2.83	117.33	2.85	119.24	2.87
$5 \times 3 \frac{1}{2} \times \frac{5}{8}$	67.2	19.68	113.67	2.40	115.93	2.43	$\begin{aligned} & 118.23 \\ & 106.48 \end{aligned}$	2.45
$\times \frac{9}{16}$	60.8	17.88	102.37	2.39	104.4 I	2.42		2.44
$\times \frac{1}{2}$	54.4	16.00	90.94	2.38	$\begin{aligned} & 92.74 \\ & 80.65 \end{aligned}$	2.41	$\begin{aligned} & 94.57 \\ & 82.24 \end{aligned}$	2.43
$\times \frac{7}{16}$	48.0	14.12	$\begin{aligned} & 79.09 \\ & 67.84 \end{aligned}$	2.37		2.39		82.24 2.41
$\times \frac{3}{8}$	41.6	12.20		2.36	$\begin{aligned} & 80.65 \\ & 69.18 \end{aligned}$	2.38	70.54	2.40
$\times \frac{5}{16}$	34.8	10.24	56.52	2.35	$\begin{aligned} & 69.18 \\ & 57.63 \end{aligned}$	57.63	58.75	2.40
$4 \times 3 \times \frac{9}{16}$	49.2	14.48	53.70	1.93	55.05	1.95	56.43	1.97
$\times \frac{1}{2}$	44.4	13.00	47.72	1.92	48.92	1.94	50.14	1.96
$\times \frac{7}{16}$	39.2	I 1.48	4 I .39	1.90	42.42	1.92	43.48	1.95
$\times \frac{3}{8}$	34.0	9.92	$\begin{aligned} & 35 \cdot 42 \\ & 29.56 \end{aligned}$	$\begin{aligned} & 1.89 \\ & 1.88 \end{aligned}$	$\begin{aligned} & 36.30 \\ & 30.29 \end{aligned}$	$\begin{aligned} & \text { I. } 91 \\ & \text { 1. } 90 \end{aligned}$	$\begin{aligned} & 37.20 \\ & 31.04 \end{aligned}$	$\begin{aligned} & \text { I. } 94 \\ & \text { 1. } 93 \end{aligned}$
$\times \frac{5}{16}$	28.4	8.36						
$3 \times 2 \frac{1}{2} \times \frac{1}{2}$	34.0	10.00	20.98	1.45	21.69	1.47	22.42	1.50
$\times \frac{7}{16}$	30.4	8.88	18.36	1. 44	18.98	1. 46	19.62	$\begin{aligned} & \text { I. } 49 \\ & \text { I. } 48 \end{aligned}$
$\times \frac{3}{8}$	26.4	7.68	$\begin{aligned} & 15.68 \\ & \text { 12.89 } \end{aligned}$	I. 43	16.21	1. 45	16.75	
$\times \frac{5}{16}$	22.0	6.48		I.4I	13.33	1.43	13.77	
$\times \frac{1}{4}$	18.0	5.24	10.29	1.40	10.64	I. 42	10.99	1.45
$2 \frac{1}{2} \times 2 \times \frac{3}{8}$	21.2	6.20	9.29	1.22	9.67	1.25	10.06	1.27
$\times \frac{5}{16}$	18.0	5.24	$\begin{aligned} & 7.74 \\ & 6.15 \end{aligned}$	1.22	8.05	I. 24	8.37	1. 26
$\times \frac{1}{4}$	14.8	4.24		1.20	6.404.76	$\begin{aligned} & \mathrm{I} .23 \\ & \mathrm{I} .2 \mathrm{I} \end{aligned}$	6.654.95	1.251.24
$\times \frac{3}{16}$	II. 2	3.24	4.58	I.19				

ANGLES, LACED
LONG LEGS OUTSTANDING

Axis AA.							
$\frac{5}{8 \prime}{ }^{\prime \prime} \mathrm{b}$. to b .		$\frac{3}{4 \prime}^{\prime \prime} \mathrm{b}$. to b.		$\frac{7}{8}^{\prime \prime} \mathrm{b}$. to b .		$\mathrm{I}^{\prime \prime} \mathrm{b}$. to b.	
I	r	I	r	I	r	I	r
395.41	3.68	406.24	3.73	417.30	3.78	428.59	3.83
362.91	3.67	372.85	3.72	382.99	3.77	393.35	3.82
328.50 .	3.65	337.49	3.70	346.67	3.75	356.05	3.80
295.94	3.64	304.02	3.69	312.29	3.74	320.72	3.79
263.24	3.63	270.42	3.68	277.76	$3 \cdot 73$	285.26	3.78
229.46	3.61	$235 \cdot 71$	3.66	242.11	3.71	248.64	3.76
$\frac{7}{16}{ }^{\prime \prime} \mathrm{b}$	b .	$\frac{1}{2}^{\prime \prime}$		$\frac{1511}{8 \prime} \mathrm{~b}$		$3^{3 \prime}$	
244.73	2.97	248.75	2.99	256.94	3.04	265.35	3.09
224.42	2.96	228.10	2.98	235.60	3.03	243.30	3.08
202.81	2.94	206.13	2.97	212.90	3.01	219.86	3.06
182.55	2.93	185.53	2.96	191.61	3.00	197.86	3.05
162.29	2.92	164.93	2.95	170.33	2.99	175.87	3.04
141.2I	2.91	143.50	2.93	148.19	2.98	153.00	3.03
121.17	2.90	123.14	2.92	127.14	2.97	131.27	3.02
120.57	2.48	122.95	2.50	127.83	2.55	132.85	2.60
108.58	2.46	110.72	2.49	115.10°	2.54	119.63	2.59
96.43	2.46	98.33	2.48	102.21	2.53	106.22	2.58
83.86	2.44	85.51	2.46	88.88	2.51	92.36	2.56
71.92	2.43	73.33	2.45	76.21	2.50	79.19	2.55
59.90	2.42	61.07	2.44	63.46	2.49	65.94	2.54
57.83	2.00	59.27	2.02	62.22	2.07	65.29	2.12
51.38	1.99	52.65	2.01	55.27	2.06	57.99	2.11
44.56	1.97	45.66	1.99	47.93	2.04	50.29	2.09
38.12	1.96	39.06	1.98	41.00	2.03	43.01	2.08
31.80	1.95	32.58	1.97	34.19	2.02	35.87	2.07
23.17	1.52	23.95	1.55	25.55	1.60	27.23	1. 65
20.28	1.51	20.95	1. 54	22.35	1.59	23.82	1.64
17.31	1.50	17.88	1. 53	19.08	1.58	20.33	1. 63
14.23	1. 48	14.70	1.51	15.68	1. 56	16.72	1.61
I 1. 36	1.47	1 I .73	1. 50	12.51	1.55	13.33	1.60
10.46	1.30	10.87	1.32	11.73	1. 38	12.64	1.43
8.71	1.29	9.05	1.3I	9.76	1.36	10.52	1.42
6.91	1.28	7.19	1. 30	7.75	1.35	8.35	1. 40
5.14	1.26	$5 \cdot 35$	1.28	$5 \cdot 77$	1.33	6.21	1.38

Size.	Total Section.		Axis AA					
			$\frac{3}{8}{ }^{\prime \prime} \mathrm{b}$. to b .		$\frac{7}{16}^{\prime \prime}$ b. to b.		$\frac{1}{2}^{\prime \prime} \mathrm{b}$. to b.	
	Weight.	Area.	I	r	I	r	I	r
$8 \times 8 \times 1$	204.0	60.00	748.37	3.53	758.01	$3 \cdot 55$	767.78	$3 \cdot 58$
$\times \frac{15}{16}$	192.0	56.48	698.13	$3 \cdot 52$	707.10	$3 \cdot 54$	716.19	$3 \cdot 56$
$\times \frac{7}{8}$	180.0	52.92	651.05	3.51	659.40	3.53	667.85	$3 \cdot 55$
$\times \frac{13}{16}$	168.0	49.36	604.26	3.50	6r1.98	3.52	619.80	3.54
$\times \frac{3}{4}$	155.6	45.76	557.57	3.49	564.67	$3 \cdot 51$	571.87	$3 \cdot 54$
$\times 11$	143.2	42.12	508.81	3.48	515.27	3.50	521.81	3.52
$\times \frac{5}{8}$	130.8	38.44	462.33	3.47	468.18	3.49	474.10	$3 \cdot 51$
$\dot{\times} \frac{9}{16}$	I I8.0	34.72	415.93	3.46	421.17	3.48	426.47	3.50
$\times \frac{1}{2}$	105.6	31.00	369.75	3.45	374.38	$3 \cdot 48$	379.08	3.50
$6 \times 6 \times \frac{3}{4}$		33.76	243.28	2.68	247.47	2.71	251.72	2.73
$\times \frac{11}{16}$	ro6.0	31.12	221.58	2.67	225.38	2.69	229.24	2.71
- 5	96.8	28.44	201.21	2.66	204.64	2.68	208.14	2.71
$\times \frac{9}{16}$	87.6	25.72	180.88	2.65	183.96	2.67	187.09	2.70
$\times \frac{1}{2}$	78.4	23.00	${ }^{1} 59.85$	2.64	162.56	2.66	r65.31	2.68
$\times \frac{7}{16}$	68.8	20.2417.44	1 39.80	$\begin{aligned} & 2.63 \\ & 2.62 \end{aligned}$	$\begin{aligned} & 142.16 \\ & 121.8 \mathrm{I} \end{aligned}$	$\begin{aligned} & 2.65 \\ & 2.64 \end{aligned}$	$\begin{aligned} & 144.56 \\ & \text { 123.86 } \end{aligned}$	$\begin{aligned} & 2.67 \\ & 2.66 \end{aligned}$
- ${ }^{\frac{3}{8}}$	59.2		119.80					
		18.44	$\frac{1}{4}^{\prime \prime}$ b. to b.		$\frac{5}{16}{ }^{\prime \prime} \mathrm{b}$. to b .		$\frac{3}{8}{ }^{\prime \prime} \mathrm{b}$. to b.	
$4 \times 4 \times \frac{5}{8}$	62.8		60.50	1.81	62.08	1.83	63.69	1.86
$\times \frac{9}{16}$	57.2	16.72	54.28	1.80	55.69	1.83	57.13	1.85
$\times \frac{1}{2}$	51.2	15.00	47.79	1.78	49.02	1.81	50.29	1. 83
$\times \frac{7}{16}$	45.2	13.24	4 I .74	1.78	42.82	1.80	43.92	1.82
$\times \frac{3}{8}$	39.2	II. 44	35.75	1.77	36.66	1.79	37.60	${ }^{\text {x }}$. 8 I
$\times \frac{5}{16}$	32.8	9.60	29.72	1.76	30.48	1.78	3 L .25	1.80
$3 \times 3 \times \frac{1}{2}$	37.6	11.00	21.12	1. 39	21.86	1.4I	22.62	1.43
$\times \frac{7}{16}$	33.2	9.72	18.37	1.37	19.01	1.40	19.67	1.42
$\times \frac{3}{8}$	28.8	8.44	15.73	1.37	16.28	1.39	16.84	1.41
$\times \frac{5}{16}$	24.4	7.12	13.09	1. 36	13.54	1.38	14.00	1. 40
$\times \frac{1}{4}$	19.6	$5 \cdot 76$	10.32	1.34	10.68	1.36	11.04	1. 38
$2 \frac{1}{2} \times 2 \frac{1}{2} \times \frac{7}{16}$	27.2	8.00	10.99	1.17	11.45	1.20	11.93	1.22
$\times \frac{3}{8}$	23.6	6.92	9:34	1.16	9.73	1.19	10.13	I. 21
$\times \frac{5}{16}$	20.0	5.88	7.80	1.15	8.12	1.18	8.46	1.20
$\times \frac{1}{4}$	16.4	4.76	6.20	1.14	6.45	1.16	6.72	1.19
$\times \frac{3}{16}$	12.4	3.60	$4 \cdot 59$	1.13	4.78	1.15	4.97	1.18
$2 \times 2 \times \frac{5}{16}$	16.0	4.60	4.16	. 95	$4 \cdot 38$. 98	4.61	1.00
$\times \frac{1}{4}$	12.8	3.76	3.32	. 94	3.49	.96	3.67	. 99
$\times \frac{3}{16}$	10.0	2.88	2.51	.93	2.64	.96	2.77	. 98

TABLE 7 (Continued)
ANGLES, LACED

LEGS

Axis AA.							
$\frac{5}{8}^{\prime \prime} \mathrm{b}$. to b.		$3^{\prime \prime}{ }^{\prime \prime} \mathrm{b}$. to b.		$\frac{7}{8}^{\prime \prime} \mathrm{b}$. to b.		$\mathrm{I}^{\prime \prime} \mathrm{b}$. to b.	
I	r	I	r	I	r	I	r
787.67	3.62	808.02	3.67	828.84	3.72 .	850.13	3.76
734.70	3.61	753.65	3.65	773.03	3.70	792.87	3.75
685.06	3.60	702.68	3.64	720.71	3.69	739.16	3.74
635.73	$3 \cdot 59$	652.04	3.63	668.74	3.68	685.82	3.73
586.52	$3 \cdot 58$	601.52	3.63	616.89	3.67	632.61	3.72
535.14	$3 \cdot 56$	548.79	3.61	562.78	3.66	577.09	3.70
486.17	$3 \cdot 56$	498.53	3.60	511.20	3.65	524.17	3.69
437.28	$3 \cdot 55$	448.37	$3 \cdot 59$	459.72	3.64	471.35	3.68
388.66	$3 \cdot 54$	398.48	$3 \cdot 59$	408.53	3.63	418.84	3.68
260.42	2.78	269.38	2.82	278.60	2.87	288.10	2.92
237.14	2.76	245.29	2.81	253.67	2.86	262.31	2.90
215.29	2.75	222.66	2.80	230.25	2.85	238.07	2.89
193.49	2.74	200.09	2.79	206.89	2.84	213.90	2.88
170.95	2.73	176.77	2.77	182.77	2.82	188.95	2.87
149.47	2.72	154.54	2.76	159.77	2.8 I	165.15	2.86
128.05	2.71	132.37	2.75	1 36.83	2.80	141.43	2.85
$\frac{7}{16}{ }^{\prime \prime} \mathrm{b}$. to b .		$\frac{1}{2}^{\prime \prime} \mathrm{b}$. to b.		$\frac{5}{8 \prime}^{\prime \prime} \mathrm{b}$. to b .		$3^{\prime \prime}{ }^{\prime \prime} \mathrm{b}$. to b.	
65.34	1.88	67.03	1.91	70.51	1.96	74.14	2.01
58.61	1.87	60.12	1.90	63.24	1.94	66.48	1.99
51.59	1.85	52.91	1. 88	55.65	1.93	58.51	1.97
45.05	r. 84	46.20	1.87	48.59	1.92	51.08	1.96
38.56	1.84	39.54	1.86	41.58	1.91	43.70	I. 95
32.05	1.83	32.86	1.85	$34 \cdot 54$	1.90	36.30	1.94
23.40	1.46	24.20	1.48	25.86	1.53	27.61	1.58
20.34	1.45	21.04	1.47	22.49	1.52	24.01	1.57
17.41	1. 44	18.01	I. 46	19.24	1.51	20.55	I. 56
14.48	I. 43	14.97	1.45	16.00	1.50	17.08	I. 55
11.42	1.41	11.80	1.43	12.61	1.48	13.46	1.53
12.42	1.25	12.93	1.27	13.99	1. 32	15.11	1.37
10.55	1.23	10.98	1.26	11.88	1.31	12.83	1.36
8.80	1.22	9.16	1.25	9.91	1. 30	10.71	1.35
6.99	1.21	7.28	1.24	7.87	1.29	8.51	I. 34
5.17	1.20	$5 \cdot 38$	1.22	5.82	1.27	6.28	1.32
4.84	1.03	5.08	1.05	$5 \cdot 59$	1.10	6.14	1.16
3.86	1.01	4.05	1.04	$4 \cdot 46$	1.09	4.90	1.14
2.91	1.01	3.06	1.03	$3 \cdot 36$	1.08	3.69	1.13

FOUR ANGLES, LACED
unequal legs, short legs outstanding

	边		 	
	-		 	

TABLE 9 (Continued on $p p .18$ and 19)
 FOUR ANGLES, LACED

UNEQUAL LEGS, LONG, LEGS OUTSTANDING

Size.	Total Section.		Axis Rb .					
			$7 \frac{1}{2}^{\prime \prime}$ b. to b.		$83^{\prime \prime}$ b. to b.		rol" ${ }^{\prime \prime}$ b. to b.	
	Weight.	Area.	I	r	I	r	I	r
$\begin{array}{r} 7 \times 3 \frac{1}{2} \times \frac{3}{4} \\ \times \frac{1}{16} \\ \times \frac{5}{8} \\ \times \frac{9}{16} \\ \times \frac{1}{2} \\ \times 16 \end{array}$	99.6	29.24	266.85	3.02	334.12	3.38	553.71	4.35
	92.0	27.00	249.83	3.04	312.35	3.40	516.20	4.37
	84.0	24.68	233.00	3.07	290.70	3.43	$47^{8.52}$	4.40
	76.0	22.36	214.03	3.09	266.64	3.45	437.70	4.42
	68.0	20.00	194.06	3.12	24 1. 42	3.47	395.22	4.45
	60.0	17.60	174.20	3.15	216.28	3.51	352.68	4.48
					$8^{1 / 2}{ }^{\prime \prime}$ b. to b.		1012 ${ }^{\prime \prime}$ b. to b.	
$\begin{array}{r} 6 \times 4 \times \frac{3}{4} \\ \times \frac{11}{16} \\ \times \frac{5}{8} \\ \times \frac{9}{16} \\ \times \frac{1}{2} \\ \times 16 \\ \times \frac{7}{16} \\ \times \frac{3}{8} \end{array}$	94.4	27.76			313.68	$3 \cdot 36$	488.93	4.20
	87.2	25.64.			293.36	3.38	456.12	4.22
	80.0	23.44	-•••	. .	273.12	3.41	423.15	4.25
	72.4	21.24			250.61	3.43	387.30	4.27
	64.8	19.00			227.00	3.46	349.95	4.29
	57.2	16.72			203.38	3.49	312.45	4.32
	49.2	14.44		- .	${ }^{177.81}$	$3 \cdot 51$	272.51	$4 \cdot 34$
			$7 \frac{1}{2}^{\prime \prime}$ b. to b.		$8 \frac{1}{4}^{\prime \prime}$ b. to b.		1014 ${ }^{\prime \prime}$ ' b, to b.	
$\begin{array}{r} 5 \times 3 \frac{1}{2} \times \frac{5}{8} \\ \times \frac{9}{16} \\ \times \frac{1}{2} \\ \times \frac{7}{16} \\ \times \frac{3}{8} \\ \times \frac{5}{16} \\ \end{array}$	67.2	19.68	${ }^{173.61}$	2.97	217.71	3.33	362.35	4.29
	60.8	17.88	159.99	2.99	200.32	$3 \cdot 35$	332.45	4.31
	54.4	16.00	145.25	3.01	181.58	3.37	300.46	$4 \cdot 33$
	48.0	14.12	130.83	3.04	163.20	3.40	268.96	$4 \cdot 36$
	41.6	12.20	114.62	3.07	142.77	3.42	234.64	4.39
	34.8	10.24	97.59	3.09	121.38	3.44	198.90	$4 \cdot 41$
			$6 \frac{1}{1 /}{ }^{\prime \prime}$ b. to b.		$8 \frac{11^{\prime \prime}}{}$ b. to b.		1013 ${ }^{\frac{1}{\prime \prime}} \mathrm{~b}$. to b.	
$4 \times 3 \times$	49.2	14.48	94.04	2.55	165.95	$3 \cdot 39$	${ }^{2} 75.27$	4.36
	44.4	13.00	85.8 I	2.57	150.82	3.41	249.49	4.38
	39.2	11.48	77.63	2.60	${ }^{1} 35.64$	3.44	223.46	4.41
	34.0	9.92	68.20	2.62	118.68	3.46	194.96	4.43
	28.4	8.36	58.43	2.64	101. 26	3.48	165.88	4.45
			$5 \frac{1}{2}^{\prime \prime} \mathrm{b}$. to b.		$83^{\prime \prime}$ b. to b.		$10{ }^{1 \prime \prime}{ }^{\prime \prime} \mathrm{b}$. to b.	
$3 \times 2 \frac{1}{2} \times \frac{1}{2}$	34.0	10.00	45.20	2.13	II9.II	3.45	196.61	4.43
$\times \frac{7}{16}$	30.4	8.88	40.95	2.15	107.07	3.47	176.25	4.45
$\times \frac{3}{8}$	26.4	7.68	36.12	2.17	93.73	$3 \cdot 49$	${ }^{1} 53.86$	4.48
$\times \frac{5}{16}$	22.0	6.48	31.37	2.20	80.50	3.52	131.63	4.51
$\times \frac{1}{4}$	18.0	5.24	25.85	2.22	65.87	3.55	107.43	4.53

FOUR ANGLES,
UNEQUAL LEGS, LONG

Size.	Total Section.		Axis BB.							
			I $2 \frac{1}{4}^{\prime \prime} \mathrm{b}$. to b.		$5^{\frac{1}{4}}{ }^{\prime \prime}$ b. to b.		184 ${ }^{\frac{1}{\prime \prime}} \mathrm{~b}$ b. to b.		$2 \mathrm{I}^{\frac{1}{4}} \mathrm{~b}$. to b .	
	Weight.	Area.	I	r	I	r	I	r	I	r
$\begin{array}{r} 7 \times 3 \frac{1}{2} \times \frac{3}{4} \\ \times \frac{11}{16} \\ \times \frac{5}{8} \\ \times \frac{9}{16} \\ \times \frac{1}{2} \\ \times \frac{7}{16} \end{array}$	99.6	29.24	831.78	$5 \cdot 33$	1 358.54	6.82	2016.88	8.31	2806.80	9.80
	92.0	27.00	774.05	$5 \cdot 35$	1262.08	6.84	1871.60	8.33	2602.63	9.82
	84.0	24.68	715.69	5.39	I 164.00	6.87	1723.37	8.36	2393.81	9.85
	76.0	22.36	653.47	$5 \cdot 41$	1060.98	6.89	1569.11	8.38	2177.86	9.87
	68.0	20.00	589.02	$5 \cdot 43$	954.72	6.91	1410.42	8.40	1956.12	9.89
	60.0	I 7.60	524.28	5.46	847.68	6.94	1250.28	8.43	1732.08	9.92
			$12 \frac{1}{4}^{\prime \prime} \mathrm{b}$. to b.		$\mathrm{I}^{\frac{1}{1}}{ }^{\prime \prime} \mathrm{b}$. to b.		I $8 \frac{1}{4}^{\prime \prime}$ b. to b.		$2 \mathrm{I}^{\frac{1}{4}}{ }^{\prime \prime} \mathrm{b}$. to b.	
$6 \times 4 \times \frac{3}{4}$	94.4	27.76	741.27	5.17	1223.88	6.64	1831.40	8.12	$2563.85 \mid 9.6 I$	
$\times \frac{11}{16}$	87.2	25.64	690.215 .19		I137.50	6.66	1700.17	8.14	2378.22	9.63
$\times 15$	80.0	23.44	638.56 5.22		1049.58	6.69	${ }^{1} 566.08$	8.17	2188.06	9.66
$\times \frac{9}{16}$	72.4	21.24	583.35 5		957.06	6.71	1426.36 8.19		1991.24 9.68	
$\times \frac{1}{2}$	64.8	19.00	526.08 5.		861.52	6.73	1282.478 .22		1788.919 .70	
$\times \frac{7}{16}$	57.2	16.72	468.44	$5 \cdot 29$	765.14664.91	6.76	1137.08087.00	8.25	1584.25	9.73
$\times \frac{3}{8}$	49.2	14.44	407.8I	$5 \cdot 31$		$664.9 \mathrm{I} \quad 6.79$		8.27	1374.06	9.75
			$\mathrm{I}^{\frac{1}{4}}{ }^{\prime \prime} \mathrm{b}$. to b.		$5^{\frac{1}{4}}{ }^{\prime \prime} \mathrm{b}$. to b .		184 ${ }^{1 / 1}{ }^{\prime \prime} \mathrm{b}$. to b .		$2 \mathrm{I}^{\frac{1}{4 \prime}} \mathrm{~b}$. to b.	
$5^{\times} 3 \frac{1}{2} \times \frac{5}{8}$	67.2	19.68	546.36	$5 \cdot 27$	896.17	6.75	I 334.55	8.23	1861.48	9.73
$\times \frac{9}{16}$	60.8	17.88	500.35	5.29	819.24	6.77	1218.59	8.26	1698.40	9.75
$\times \frac{1}{2}$	54.4	16.00	451.34	5•31	737.66	6.79	1095.98	8.28	${ }^{1} 526.30$	9.77
$\times \frac{7}{16}$	48.0	14.12	402.96	$5 \cdot 34$	656.91	6.82	974.40	8.31	I 355.43	9.80
$\times \frac{3}{8}$	41.6	12.20	350.91	$5 \cdot 36$	571.06	6.84	846.10	8.33	1176.05	9.82
$\times \frac{5}{16}$	34.8	10.24	296.90	$5 \cdot 38$	482.29	6.86	713.77	8.35	991.32	9.84
			12 $\frac{1}{\prime \prime}^{\prime \prime} \mathrm{b}$. to b .		$15{ }^{\frac{1}{4 \prime}} \mathrm{~b}$. to b.		184 ${ }^{\prime \prime \prime}$ b. to b.		$2 \mathrm{I}^{\frac{1}{4 \prime}} \mathrm{~b}$. to b.	
$4 \times 3 \times \frac{9}{16}$	49.2	14.48	4 I 3.56	$5 \cdot 34$	675.28	6.83	1002.17	8.32	1394.21	9.8 I
$\times \frac{1}{2}$	44.4	13.00	374.16	$5 \cdot 36$	609.92	6.85	904.17	8.34	1256.93	9.83
$\times \frac{7}{16}$	39.2	I 1.48	334.24	$5 \cdot 40$	543.47	6.88	804.35	8.37	III6.89	9.86
$\times \frac{3}{8}$	34.0	9.92	291.08	$5 \cdot 42$	472.47	6.90	698.50	8.39	969.17	9.88
$\times \frac{5}{16}$	28.4	8.36	247.23	$5 \cdot 44$	400.59	6.92	59 I .58	8.41	820.18	9.90
			$\mathrm{I} 2 \frac{4}{1 \prime}^{\prime \prime} \mathrm{b}$. to b.		$5^{\frac{1}{4}}{ }^{\prime \prime} \mathrm{b}$. to b .		I $8 \frac{1}{4 \prime}^{\prime \prime} \mathrm{b}$. to b .			
$3 \times 2 \frac{1}{2} \times \frac{1}{2}$	34.0	10.00	294.11	$5 \cdot{ }^{2}$	477.86	6.91	706.61	8.41		
$\times \frac{7}{16}$	30.4	8.88	263.18	$5 \cdot 44$	426.88	6.93	630.55	8.43		
$\times \frac{3}{8}$	26.4	7.68	229.35	$5 \cdot 46$	371.40	6.95	548.00	8.45		
$\times \frac{5}{16}$	22.0	6.48	195.72	$5 \cdot 50$	316.15	6.99	465.74	8.48		
$\times \frac{1}{4}$	18.0	5.24	${ }^{1} 59.46$	$5 \cdot 5^{2}$	257.16	7.01	378.44	8.50		

LACED
legs outstanding

Axis BB.							
$24^{\frac{1}{\prime \prime}} \mathrm{~b}$ b. to b.		$281^{\prime \prime \prime}$ b. to b.		$322^{\prime \prime \prime}{ }^{\prime \prime} \mathrm{b}$. to b.		$36 \frac{1}{4 \prime}^{\prime \prime}$ b. to b.	
1	r	1	r	1	r	I	r
3728.30	11.29	5161.64	13.29	6828.91	15.28	8730.09	17.28
3455.15	11.31	4780.85	13.31	6322.55	15.30	8080.25	17.30
3175.30	II 134	4390.05	13.34	5802.24	${ }^{15} 5.33$	7411.87	17.33
2887.24	11.36	3989.58	13.36	5270.81	${ }^{15} 535$	6730.92	17.35
2591.82	11.38	3579.42	13.38	4727.02	15.37	6034.62	17.37
2293.08	11.41	3164.28	13.41	4176.28	15.40	5329.08	17.40
$24 t^{\prime \prime}$ b. to b.		$283^{\prime \prime}{ }^{\prime \prime}$ b. to b.		$32 \frac{1}{1 / 2}^{\prime \prime}$ b. to b.		$36 \frac{1}{1 \prime \prime}^{\prime \prime}$ b. to b.	
3421.22	11.10	4758.70	13.09	6318.25	15.09	8099.89	17.08
3171.65	11.12	4409.04	I3.11	5851.55	15.11	7499.17	17.10
2915.52	11.15	4049.55	13.14	5371.10	15.14	6880.16	17.13
2651.70	11.17	3680.99	13.16	4880.20	15.16	6249.33	17.15
2380.86	II.19	3303.12	13.18	4377.38	15.18	5603.64	17.17
2106.67	11.23	2920.26	13.22	3867.62	15.21	4948.73	17.20
1826.11	11.25	2529.91	13.24	3349.24	15.23	4284.08	17.22
$24 \frac{1}{\prime \prime}^{\prime \prime}$ b. to b.		$28 \frac{1}{4}^{\prime \prime}$ b. to b.					
2476.97	11.22	3435.39	13.21				
2258.67	11.24	$3^{11} 30.85$	13.23				
2028.62	11. 26	2810.38	13.25				
1799.99	11.29	2491.59	13.28				
1560.90	11.31	2159.43	13.30				
1314.96	11.33	1818.15	13.32				
$24 \frac{1}{\frac{1}{4}}$ b. to b.							
1851.42	11.31						
1668.18	11.33						
148 I .09	II. 36						
1284.47	11.38						
1086.40	11.40						

LACED
LEGS

Axis BB.							
$24 \frac{1}{1 / \prime}$ b. to b.		$284^{\prime \prime}$ b. to b.		$32{ }^{\frac{1}{4}}{ }^{\prime \prime} \mathrm{b}$. to b.		$36 \frac{1}{4}^{\prime \prime}$ b. to b.	
I	r	I	r	I	r	I	r
$6065 \cdot 5^{2}$	I0.05	8646.72	12.00	11707.92	13.97	15249.12	15.94
5745.07	10.09	8ı8ı.6ı	12.04	11070.00	14.00	14410.23	15.97
5405.94	10.11	7693.15	12.06	10403.71	14.02	${ }^{1} 3537.63$	15.99
5063.59	10.13	7200.88	12.08	9733.05	14.04	12660.10	16.02
4714.20	10.15	6699.27	12.10	9050.42	14.06	11767.65	16.04
4365.92	10.18	6198.14	12.13	8367.32	14.09	10873.46	16.07
4001.38	10.20	5676.60	12.15	7659.33	14.12	9949.59	16.09
3629.59	10.22	5145.46	12.17	6939.10	14.14	9010.49	16.11
3254.35	10.25	4610.29	12.20	6214.23	14.16	8066.17	16.13
$24 \frac{1}{4}^{\prime \prime}$ b. to b.		$28 \frac{1}{4}^{\prime \prime}$ b. to b.		$32^{\frac{1}{4}}{ }^{\prime \prime} \mathrm{b}$. to b.		$36 \frac{1}{1 \prime \prime}^{\prime \prime}$ b. to b.	
$3725 \cdot 56$	10.50	5257.59	12.48	7059.70	14.46	9131.89	16.45
3454.54	10.54	4870.50	12.51	$6535 \cdot 42$	14.49	8449.30	16.48
3169.75	10.56	4466.05	12.53	5989.86	14.51	7741.20	16.50
2878.19	10.58	4052.56	12.55	5432.70	14.53	7018.59	16.52
2588.89	10.61	3641.83	12.58	4878.77	14.56	6299.71	16.55
2287.33	10.63	3215.53	12.60	4305.66	14.59	5557.71	16.57
1978.83	10.65	2780.02	12.63	3720.74	14.61	4800.97	16.59
${ }^{1} 5^{\frac{1}{4}}{ }^{\prime \prime} \mathrm{b}$. to b .		1819 ${ }^{\prime \prime}$ b. to b.		$2 \mathrm{I} \frac{1}{4}^{\prime \prime} \mathrm{b}$. to b.		$24^{\frac{1}{\prime \prime \prime}} \mathrm{~b}$. to b.	
780.76	6.51	1176.02	7.99	1654.27	9.47	2215.49	10.96
712.55	6.53	1071.94	8.01	${ }^{1} 506.58$	9.49	2016.45	10.98
$645 \cdot 31$	6.56	969.09	8.04	1360.36	$9 \cdot 52$	1819.14	11.01
573.26	6.58	859.84	8.06	1206.00	9.54	1611.74	11.03
498.55	6.60	746.86	8.08	1046.64	$9 \cdot 56$	1397.91	11.05
421.06	6.62	630.01	8.10	882.15	$9 \cdot 59$	1177.50	11.07
$\mathrm{I}^{\frac{1}{4}}{ }^{\prime \prime} \mathrm{b}$. to b.		$18 \frac{1}{4}^{\prime \prime} \mathrm{b}$. to b .					
501.93	6.75	747.62	8.24				
446.25	6.78	663:93	8.27				
389.88	6.80	579.40	8.29				
330.93	6.82	491.23	8.31				
270.13	6.85	400.33	8.34				

TABLE 11
=

Size.	Total Section.		Axis BB.															
					I $4 \frac{1}{2}^{\prime \prime}$ b. to b.		$181^{1 / 1}$ b. to b.		$2 \mathrm{I} \mathrm{l}^{\prime \prime} \mathrm{b}$. to b.		$24 \frac{1}{1 / 2}^{\prime \prime}$ b. to b.		$288^{\prime \prime} \mathrm{b}$. to b.		$32 \frac{1}{4 \prime}^{\prime \prime} \mathrm{b}$. to b.		$36 \frac{1}{1 / \prime}^{\prime \prime}$ b. to b.	
	Wgt.	Area.	I		I		I		I	r	I		I	r	I	r	I	r
$7 \times 3 \frac{1}{2} \times$ 星	99.6	29.24			770.77	5.13	1381.25	6.87	2017.66	8.31	2785.65	9.76	4014.31	11.72	5476.90	13.69	3.40	. 66
$\times 16$	92.0	27.00			717.69	5.16	1283.42	6.89	1872.70	8.33	2583.47	9.78	3720.17	II. 74	5072.87	13.71	6641.57	15.68
$\times \frac{5}{8}$	84.0	24.68			663.99	5.19	п183.89	6.93	1724.75	8.36	2376.68	9.81	3418.66	II. 77	4658.09	13.74	6094.96	15.71
$\times 1$	76.0	22.36			606.65	21	1079.36	6.95	1570.72	8.38	2162.70	9.84	3108.53	11.79	4233.23	13.76	5536.82	15:74
+ $\times 1$.	68.0	20.00			547.2I	5.23	971.52	6.97	1412.22	8.40	1942.92	9.86	2790.52	11.8I	3798.12	13.78	4965.72	15.76
	60.0	17.60			487.34	5.26	862.72	7.00	1252.12	8.43	1720.72	9.89	2468.72	11.84	3357.5^{2}	13.81	4387.12	15.79
$6 \times 4 \times$ 年			I2 $\frac{1}{2}^{\prime \prime} \mathrm{b}$ to b.		${ }^{5} 5^{\frac{1}{4 \prime}} \mathrm{~b}$ b to b.		1881". b. to b.		$21^{1 / 14^{\prime \prime}} \mathrm{b}$. to b.		$24^{\frac{1}{1 \prime \prime}} \mathrm{~b}$. to b.		28819 ${ }^{\frac{1}{4}}$ b. to b.		$32 \frac{1}{4 \prime}^{\prime \prime}$ b. to b.		$36{ }^{1 / 1}{ }^{\prime \prime}$ b. to b.	
	9	27.76	580.76	4.57	951	5.85	1475.83	7.29	2124.99	8.75	2899.08	10.22	4125.52	12.19	5574.03	14.17	7244.63	
$\times 16$	87.2	25.64	541.42	4.60	885.33	5.88	1371.08	$7 \cdot 3 \mathrm{I}$	1972.21	8.77	2688.72	10.24	3823.55	12.21	5163.49	14.19	6708.56	16.18
$\times \frac{5}{8}$	80	23	5	4.63	818.0	91	1264.23	34	1815.89	8.80	2473.03	10.27	3513.29	12.24	4741.08	14.22	6156.39.	16.21
$\times \frac{9}{16}$	72.	21.24	458.88	4.65	746.70	5.93	1152.28	$7 \cdot 37$	1653.44	8.82	2250.17	10.29	3194.50	26	4308.75	14.24	5592.92	16.23
$\times \frac{1}{2}$	64.	19	414.40	4.67	672.9	5.95	1036.86	$7 \cdot 39$	1486.30	8.84	2021.25	10.31	2867.51	12.29	3865.77	14.26	5016.03	16.25
$\times \frac{7}{16}$	57.	16.72	369.56	4.70	598.42	5.98	920.20	$7 \cdot 42$	1317.21	8.88	1789.47	10.35	2536.19	12.32	3416.66	14.	4430.90	16.28
$\times \frac{3}{8}$	49.2	14.44	322.12	4.72	520.57	6.00	799.33	$7 \cdot 44$	1143.08	8.90	1551.80	10.37	2197.85	12.34	2959.41	14.32	3836.50	16.30
			1012 b. to b.		12411 ${ }^{\frac{1}{4}}$ b. to b.		I54" b. to b.		I884" ${ }^{\frac{1}{4}}$ b. to b.		$2 \mathrm{I}^{\frac{1}{4 \prime}} \mathrm{~b}$. to b.		$24 \frac{1}{1 / 1}^{\prime \prime}$ b. to b.		$28 \frac{1}{4 \prime}^{\prime \prime}$ b. to b.		$32 \frac{1}{\prime \prime}^{\prime \prime} \mathrm{b}$. to b.	
$5 \times 3 \frac{1}{2} \times \frac{5}{8}$	67.2	19.68	296.14	3.88	433.47	4.69	. 0	6.13	1133.09	7.59	1615.74	9.06	2186.95	10.54	3086.33	12.52	4143.15	14.51
$\times \frac{9}{16}$	60.8	17.88	272.00	3.90	397.39	4.71	676.05	6.15	1035.17	7.61	1474.75	9.08	1994.79	10.56	28I 3 . 34	12.54	3774.93	14.53
$\times \frac{1}{2}$	54.4	16.00	246.17	3.92	358.94	4.74	609.26	6.17	931.58	7.63	1325.90	9.10	1792.22	10.58	2525.98	12.56	3387.74	14.55
$\times \frac{7}{16}$	48.0	14.12	220.63	3.95	320.89	4.77	543.07	6.20	828.79	7.66	1178.05	9.13	1590.85	10.61	2240.09	12.60	3002.28	14.58
$\times \frac{3}{8}$	41.5	12.20	192.77	3.97	279.82	4.79	472.52	6.22	720.12	7.68	1022.62	9.16	1380.02	10.64	1941.95	12.62	2601.48	14.60
\times	34.8	10.24	163.57	4.00	237.00	4.81	399.35	6.24	607.79	7.70	862.30	9.18	1162.90	10.66	1635.37	12.64	2189.77	14.62

TABLE 12
MOMENT OF INERTIA OF ONE PLATE ABOUT AXIS AA

- ㄷ.	Thickness or Plate in Inches.												
	4	$\frac{5}{16}$	$\frac{3}{8}$	$\frac{7}{16}$	$\frac{1}{2}$	$\frac{9}{16}$	$\frac{5}{8}$	$\frac{11}{1} \frac{1}{6}$	$\frac{3}{4}$	$\frac{13}{16}$	$\frac{7}{8}$	$\frac{15}{16}$	I
4	. OI	. OI	. 02	. 03	. 04	. 06	. 08	.II	.14	. 18	. 22	. 27	-33
5	. 01	. 01	. 02	. 03	. 05	. 07	. 10	. 14	. 18	. 22	. 28	- 34	. 42
6	. 01	. 02	. 03	. 04	. 06	. 09	. 12	.16	. 21	. 27	-33	.41	. 50
7	. 01	. 02	. 03	. 05	. 07	.10	. 14	. 19	. 25	-3I	-39	. 48	. 58
8	. 01	. 02	. 04	. 06	. 08	. 12	. 16	. 22	. 28	.36	-45	. 55	. 67
9	. 01	. 02	. 04	. 06	. 09	. 13	. 18	. 24	- 32	. 40	$\cdot 50$. 62	. 75
10	. 01	. 03	. 04	. 07	. 10	. 15	. 20	. 27	-35	. 45	.56	. 69	. 83
II	.OI	. 03	. 05	. 08	.II	. 16	. 22	-30	-39	-49	.61	.76	. 92
12	. 02	. 03	. 05	. 08	. 13	. 18	. 24	. 32	. 42	-54	. 67	. 82	1.00
13	. 02	. 03	. 06	. 09	. 14	. 19	. 26	. 35	.46	. 58	. 73	. 89	1.08
14	. 02	. 04	. 05	. 10	. 15	. 21	. 28	.38	. 49	. 63	.78	. 96	1.17
15	. 02	. 04	. 07	. 10	. 16	. 22	-3I	. 41	- 53	.67	. 84	1.03	1.25
16	. 02	. 04	. 07	. 11	. 17	. 24	-33	. 43	.56	. 72	. 89	1.10	1.33
17	. 02	. 04	. 07	. 12	. 18	. 25	. 35	.46	. 60	.76	. 95	1.17	1.42
18	. 02	. 05	. 08	. 13	. 19	. 27	-37	. 49	. 63	. 80	1.00	1.24	1.50
19	. 02	. 05	. 08	. 13	. 20	. 28	$\cdot 39$	-51	. 67	. 85	1.06	1.30	1.58
20	. 03	. 05	. 09	. 14	. 21	- 30	. 41	$\cdot 54$	$\cdot 70$. 89	1.12	I. 37	1. 67
21	. 03	. 05	. 09	. 15	. 22	-31	. 43.	. 57	$\cdot 74$. 94	1.17	1. 44	1.75
22	. 03	. 06	.10	. 15	. 23	$\cdot 33$. 45	. 60	-77	. 98	1.23	1.51	1.83
23	. 03	. 06	. 10	. 16	. 24	- 34	. 47	. 62	.8I	1.03	1. 28	1. 58	1.92
24	. 03	. 06	. II	. 17	. 25	. 36	. 49	. 65	. 84	1.07	1. 34	1. 65	2.00
25	. 03	. 06	.II	. 17	. 26	$\cdot 37$	-5I	. 68	. 88	1.12	1. 40	1.72	2.08
26	. 03	. 07	. II	. 18	. 27	- 39	- 53	. 70	.91	1.16	1.45	1.79	2.17
27	. 04	. 07	. 12	.19	. 28	. 40	. 55	$\cdot 73$. 95	1.2I	1.5I	1. 85	2.25
28	. 04	. 07	. 12	. 20	. 29	. 42	-57	. 76	. 98	1.25	1. 56	1.92	2.33
29	. 04	. 07	. 13	. 20	-30	$\cdot 43$. 59	. 79	1.02	1.30	1.62	I. 99	2.42
30	. 04	. 08	. 13	. 21	-31	$\cdot 44$. 61	.8I	1.05	1.34	1. 67	2.06	2.50
32	. 04	. 08	. 14	. 22	. 33	$\cdot 47$. 65	. 87	1.12	1.43	1.79	2.20	2.67
34	. 04	. 09	. 15	. 24	. 35	. 50	. 69	. 92	1.20	1.52	1.90	2.33	2.83
36	. 05	. 09	. 16	. 25	.38	. 53	. 73	. 97	1.27	1.61	2.01	2.47	3.00
38	. 05	. 10	. 17	. 27	. 40	. 56	. 77	1.03	I. 34	1.70	2.12	2.61	3.17.
40	. 05	. 10	. 18	. 28	. 42	. 59	. 81	1.08	I. 41	Ј. 79	2.23	2.75	3.33
42	. 05	.II	. 18	. 29	. 44	. 62	. 85	1.14	1.48	1. 88	2.34	2.88	3.50
44	. 06	.II	.19	-31	. 46	. 65	. 90	1.19	I. 55	1.97	2.46	3.02	3.67
46	. 06	. 12	. 20	$\cdot{ }^{2}$. 48	. 68	-94	1.25	1.62	2.06	2.57	3.16	3.83
48	. 06	. 12	. 21	- 33	. 50	. 71	. 98	1.30	1.69	2.15	2.68	$3 \cdot 30$	4.00
50	. 07	. 13	. 22	. 35	. 52	. 74	1.02	1. 35	1.76	2.23	2.79	3.43	4.17
54	. 07	. 14	$\cdot 24$	- 38	. 56	. 80	I. 10	I. 46	1.90	2.41	3.01	3.71	$4 \cdot 50$
60	. 08	. 15	. 26	$\cdot 4^{2}$. 63	. 89	1.22	1.62	2.11	2.68	$3 \cdot 35$	4.12	5.00

MOMENT OF INERTIA OF

	Thickness of Plate in Inches						
	$\frac{1}{4}$	$\frac{5}{16}$	$\frac{3}{8}$	$\frac{7}{16}$	$\frac{1}{2}$	$\frac{9}{16}$	$\frac{5}{8}$
4	1.33	1. 67	2.00	2.33	2.67	3.00	$3 \cdot 33$
5	2.60	3.26	3.91	$4 \cdot 56$	5.21	5.86	6.51
6	$4 \cdot 50$	5.63	6.75	7.88	9.00	10.13	11.25
7	7.15	8.93	10.72	12.51	14.29	16.08	17.86
8	10.67	13.33	16.00	18.67	21.33	24.00	26.67
9	15.19	18.98	22.78	26.58	30.38	34.17	37.97
10	20.83	26.04	31.25	36.46	41.67	46.88	52.08
II	27.73	34.66	41.59	48.53	55.46	62.39	69.32
12	36.00	45.00	54.00	63.00	72.00	81.00	90.00
13	45.77	57.21	68.66	80.10	91.54	102.98	114.43
14	57.17	71.46	85.75	100.04	114.33	128.63	142.92
15	70.31	87.89	105.47	123.05	140.63	158.20	1 75.78
16	85.33	106.67	128.00	149.33	170.67	192.00	213.33
17	102.35	127.94	I 53.53	179.12	204.71	230.30	255.89
18	121.50	151.88	182.25	212.63	243.00	273.38	303.75
19	142.90	178.62	214.34	250.07	285.79	321.52	357.24
20	166.67	208.33	250.00	291.67	$333 \cdot 33$	375.00	416.67
21	192.94	241.17	289.41	337.64.	385.88	434.11	482.34
22	221.83	277.29	332.75	388.2 I	443.67	499.13	554.58
23	253.48	316.85	380.22	$443 \cdot 59$	506.96	570.33	633.70
24	288.00	360.00	432.00	504.00	576.00	648.00	720.00
25	325.52	406.90	488.28	569.66	651.04	732.42	8ı 3.80
26	366.17	457.71	549.25	640.79	732.33	823.88	915.42
27	410.06	512.58	615.09	717.61	820.13	922.64	1025.16
28	457.33	571.67	686.00	800.33	914.67	1029.00	1143.33
29	508.10	635.13	762.16	889.18	1016.21	1143.23	1270.26
30	562.50	703.13	843.75	984.38	1125.00	1265.63	1406.25
32	682.67	853.33	1024.00	1194.67	I 365.33	${ }^{1} 536.00$	1706.67
34	818.83	1023.54	1228.25	1432.96	1637.67	1842.38	2047.08
36	972.00	1215.00	1458.00	1701.00	1944.00	2187.00	2430.00
38	1143.17	1428.96	1714.75	2000.54	2286.33	2572.13	2857.92
40	I 333.33	1666.67	2000.00	$2333 \cdot 33$	2666.67	3000.00	3333.33
42	1543.50	1929.38	2315.25	2701.13	3087.00	3472.88	3858.75
44	1774.67	2218.33	2662.00	3105.67	$3549 \cdot 33$	3993.00	4436.67
46	2027.83	2534.79	3041.75	3548.71	4055.67	4562.63	5069.58
48	23.04 .00	2880.00	3456.00	4032.00	4608.00	5184.00	5760.00
50	2604.17	3255.2 I	3906.25	4557.29	5208.33	$5859 \cdot 38$	6510.42
54	3280.50	4100.63	4920.75	5740.88	6561.00	$73^{81.13}$	8201.25
60	4500.00	5625.00	6750.00	7875.00	9000.00	101 25.00	11250.00

TABLE 13 (Continued)

ONE PLATE ABOUT AXIS BB

Thickness of Plate in Inches.						
$\frac{1}{1} \frac{1}{6}$	$\frac{3}{4}$	13	$\frac{7}{8}$	$\frac{15}{16}$; I	$\frac{1}{16}$
3.67	4.00	$4 \cdot 33$	4.67	5.00	+5.33	- 33
7.16	7.81	8.46	9.11	9.77	10.42	.65
12.38	13.50	14.63	15.75	I 6.88	18.00	I. 13
19.65	21.44	23.22	25.01	26.80	28.58	1.79
20.33	32.00	34.67	$37 \cdot 33$	40.00	42.67	2.67
41.77	$45 \cdot 56$	$49 \cdot 36$	53.16	56.95	60.75	3.80
57.29	62.50	$67 \cdot 71$	72.92	78.13	83.33	5.2 I
76.26	83.19	90.12	97.05	103.98	110.92	6.93
99.00	108.00	117.00	126.00	135.00	144.00	9.00
125.87	137.31	148.76	160.20	I 71.64	183.08	I 1.44
157.21	171.50	185.79	200.08	214.38	228.67	14.29
193.36	210.94	228.52	246.09	263.67	281.25	I $7 \cdot 5^{8}$
234.67	256.00	277.33	298.67	320.00	341.33	21.33
281.47	307.06	332.65	358.24	383.83	409.42	25.59
334.13	364.50	394.88	425.25	455.63	486.00	30.38
392.96	428.69	464.41	500.14	535.86	571.58	35.72
458.33	500.00	541.67	583.33	625.00	666.67	41.67 .
530.58	578.81	627.05	675.28	$723 \cdot 52$	771.75	48.23
610.04	665.50	720.96	776.42	831.88	887.33	55.46
697.07	760.44	823.81	887.18	950.55	IOI 3.92	63.37
792.00	864.00	936.00	1008.00	1080.00	1152.00	72.00
895.18	976.56	1057.94	I 139.32	1220.70	1302.08	8I. 38
1006.96	1098.50	1190.04	I 28 I. 58	I 373.13	1464.67	91.54
1127.67	1230.19	1332.70	1435.22	1537.73	1640.25	102.52
1257.67	1372.00	1486.33	1600.67	1715.00	I 829.33	I 14.33
I 397.29	1524.31	1651.34	1778.36	1905.39	2032.42	127.03
I 546.88	1687.50	1828.13	I968.75	2109.38	2250.00	140.63
1877.33	2048.00	2218.67	2389.33	2560.00	2730.67	170.67
2251.79	2456.50	2661.21	2865.92	3070.63	3275.33	204.71
2673.00	2916.00	3159.00	3402.00	3645.00	3888.00	243.00
3143.71	3429.50	3715.29	4001.08	4286.88	4572.67	285.79
3666.67	4000.00	$4333 \cdot 33$	4666.67	5000.00	$5333 \cdot 33$	333.33
4244.63	4630.50	5016.38	5402.25	5788.13	6I74.00	385.88
4880.33	5324.00	5767.67	62 II. 33	6655.00	7098.67	443.67
5576.54	6083.50	6590.46	7097.42	$7604 \cdot 38$	8III. 33	506.96
6336.00	6912.00	7488.00	8064.00	8640.00	9216.00	576.00
7161.46	7812.50	8463.54	9114.58	9765.63	10416.67	651.04
9021.38	9841.50	10661.63	I1481.75	12301.88	13122.00	820.13
12375.00	13500.00	14625.00	I5750.00	1 6875.00	18000.00	I 125.00

MOMENT OF INERTIA OF TWO COVER PLATES FOR ANGLE COLUMNS
about axis bb

$\begin{aligned} & \text { 管总 } \\ & \text { a } \end{aligned}$							Thick	or Pla	in In					
		$\frac{1}{4}$	$\frac{5}{16}$	$\frac{3}{8}$	$\frac{7}{16}$	$\frac{1}{2}$	16	$\frac{8}{8}$	$\frac{1}{1} \frac{1}{6}$	$\frac{3}{4}$	$\frac{1}{1} \frac{3}{6}$	$\frac{7}{8}$	$\frac{1}{15}$	1
Area of Platesin			II 25	13.50	15.75	18.00	20.25	22.50	24.75	27.00	29.25	31.50	33.75	36.00
18	$36 \frac{1}{4}$		3759.89	$45^{27} \cdot 35$	5300.02	6077.91	6861.03	7649.41	8443.07	9242.01	10046.27	10855.85	11670.77	12491.06
"	$32 \frac{1}{4}$	- . .	2982.23	3592.48	$4207 \cdot 36$	4826.91	5451.12	6080.04	6713.66	7352.01	7995.11	8642.97	9295.62	9953.06
'	$28 \frac{1}{4}$	- .	2294.57	2765.60	3240.70	3719.91	4203.22	4690.66	5182.26	5678.01	6177.96	6682.10	7190.46	7703.06
	$24 \frac{1}{4}$	- . . -	1696.92	2046.73	2400.05	2756.91	3117.31	348 1. 29	3848.85	4220.01	4594.80	4973.22	5355.31	5741.06
	$21 \frac{1}{4}$	- - . .	1307.74	${ }^{1} 578.45$	1852.24	2129.16	2409.19	2692.38	2978.73	3268.26	3561.00	3856.94	4156.13	4458.56
	$18 \frac{1}{4}$		969.18	1170.91	1375.31	1582.41	1792.20	2004.73	2219.99	2438.01	2658.82	2882.41	3108.82	3338.06
	$15 \frac{1}{4}$	681.25	824.13	969.26	1116.66	1266.33	1418.32	1572.62	1729.26	1888.26	2049.63	2213.39	3379.56
Area of Plates.			10.00	12.00	14.00	16.00	18.00	20.00	22.00	24.00	26.00	28.00	30.00	32.00
16	$36 \frac{1}{4}$	\|. . .	3342.12	4024.31	4711.13	5402.58	6098.69	6799.48	7504.95	8215.12	8930.02	9649.65	10374.02	IIIO3.17
	$32 \frac{1}{4}$	- .	2650.87	3193.31	3739.88	4290.58	4845.44	5404.48	5967.70	6535.12	7106.77	7682.65	8262.77	$8847 \cdot 17$
	$28 \frac{1}{4}$	- . .	2039.62	2458.31	2880.63	3306.58	3736.19	4169.48	4606.45	5047.12	5491.52	5939.65	6391.52	6847.17
	24 ${ }^{1}$	- . . .	1508.37	1819.31	${ }^{21} 33.38$	2450.58	2770.94	3094.48	3421.20	3751.12	4084.27	4420.65	4760.27	5103.17
	2118	- . .	1162.43	1403.06	1646.44	1892.58	2141.51	2393.23	2647.76	2905.12	3165.33	3428.40	3694.33	3963.17
'	1814	- • • •	861.50	1040.81	1222.50	1406.58	1593.07	1781.98	1973.3^{2}	2167.12	2363.39	2562.15	2763.40	2967.17
	I5 ${ }^{\frac{1}{4}}$	1. . . .	605.56	732.56	861.56	992.58	1125.63	1260.73	1397.89	1537.12	1678.46	1821.90	1967.46	2115.17
Area of Plates.			8.75	10.50	12.25	14.00	15.75	17.50	19.25	21.00	22.75	24.50	26.25	28.00
14	$36 \frac{1}{4}$	2924.36	3521.27	4122.24	4727.26	5336.36	$5949 \cdot 54$	6566.83	7188.23	7813.76	8443.44	9077.27	9715.27
	321	$\cdots \cdots$	2319.51	2794.15	3272.39	3754.26	4239.76	4728.92	5221.74	5718.23	6218.42	6722.31	7229.93	7741.27
	$28 \frac{1}{4}$	- . .	1784.67	2151.02	2520.55	2893.26	3269.17	3648.29	4030.64	4416.23	4805.08	5197.19	5592.58	5991.27
	$24 \frac{1}{4}$	1319.82	1591.90	1866.70	2144.26	2424.58	2707.67	2993.55	3282.23	3573.73	3868.06	4165.24	4465.27
	$21 \frac{1}{4}$	$\cdots \cdots$	1017.13	1227.68	1440.63	1656.01	1873.82	2094.07	2316.79	2541.98	2769.66	2999.85	3232.54	3467.77
	$18 \frac{1}{4}$	753.81	910.71	1069.69	1230.76	1393.94	1559.23	1726.66	1896.23	2067.97	2241.88	2417.97	2596.27
،	$15 \frac{1}{4}$	$\cdots \cdot \cdots$	529.86	640.99	753.87	868.51	984.93	1103.14	1223.15	1344.98	1468.65	1594.16	1721.53	1850.77

TABLE 14 (Continued)

		Thicknrss of Plates in Inchrs.												
		$\frac{1}{4}$	$\frac{8}{16}$	$\frac{3}{8}$	$\frac{7}{16}$	$\frac{1}{2}$	$\frac{9}{16}$	$\frac{5}{8}$	14	$\frac{3}{4}$	13	$\frac{7}{8}$	15	1
A. of Pls.		6.00	7.50	9.00	10.50	12.00	13.50	15.00	16.50	18.00	19.50	21.00	22.50	24.00
12	361	1998.41	2506.59	3018.23	3533.34	4051.94	4574.02	5099.61	5628.71	6161.34.	6697.51	7237.23	7780.52	8327.38
"	321	1584.41	1988.15	2394.98	2804.91	3217.94	3634.08	4053.36	4475.77	4901.34	5330.08	5761.98	6197.08	6635.38
	281	1218.41	1529.72	1843.73	2160.47	2479.94	2802.14	3127.11	3454.84	3785.34	4118.64	4454.73	4793.64	$5^{1} 35.38$
	$24 \frac{1}{1}$	900.41	1131.28	1364.48	1600.03	1837.94	2078.21	2320.86	2565.90	2813.34	3063.20	3315.48	3570:20	3827.38
	214	693.41	871.83	1052.30	1234.83	1419.44	1606.13	1794.92	1985.82	2178.84	2374.00	2571.30	2770.75	2972.38
،	181	$5^{13} 3.41$	646.12	780.61	916.88	1054.94	1194.80	1336.48	1479.99	1625.34	1772.54	1921.61	2072.55	2225.38
"	$15 \frac{1}{4}$	360.41	454.17	549.42	646.17	744.44	844.22	945.55	1048.41	1152.84	1258.84	1366.42	1475.59	${ }_{1586.38}$
"	$12 \frac{1}{4}$	234.41	295.97	358.73	422.72	487.94	554.39	622.11	691.09	761.34	832.89	905.73	979.89	1055.38
A. or PLs.		5.00	6.25	7.50	8.75	10.00	11.25	12.50	13.75	15.00	16.25	17.50	18.75	20.00
10	361	1665.34	2088.83	2515.19	2944.45	3376.61	38 II .68	4249.67	4690.59	5134.45	$55^{81.26}$	6031.03	6483.76	6939.48
"	321	1320.34	1656.79	1995.82	2337.42	2681.61	3028.40	3377.80	3729.81	4084.45	4441.73	4801.65	5164.23	5529.48
	$28 \frac{1}{4}$	1015.34	1274.76	1536.44	1800.39	2066.61	2335.12	2605.92	2879.03	3154.45	3432.20	3712.28	3994.70	4279.48
	$24 \frac{1}{1}$	750.34	942.73	1137.07	1333.36	1531.61	1731.84	1934.05	2138.25	2344.45	2552.67	2762.90	$2975 \cdot 17$	3189.48
	214	577.84	726.52	876.91	1029.02	1182.86	1338.44	1495.77	1654.85	1815.70	1978.33	2142.75	2308.96	2476.98
"	181	427.84	538.44	650.51	764.06	879.11	995.67	1113.74	1233.33	1354.45	1477.12	1601.34	1727.12	1854.48
"	154.	300.34	. 378.47	457.85	538.48	620.36	703.52	787.95	873.68	960.70	1049.03	1138.68	1229.66	1321.98
"	$12 \frac{1}{1}$	195.34	246.64	298.94	352.27	406.61	462.00	518.42	575.90	634.45	694.07	754.78	816.58	879.48
A. of PLS		4.50	5.63	6.75	7.88	9.00	10.13	11.25	12.38	13.50	14.63	15.75	16.88	18.00
9	$36 \frac{1}{4}$	1498.80	1879.94	2263.67	2650.01	3038.95	3430.52	3824.71	4221.53	4621.01	5023.13	5427.92	$5835 \cdot 39$. 6245.53
"	$32 \frac{1}{4}$	1188.30	1491.11	1796.24	2103.68	2413.45	2725.56	3040.02	3356.83	3676.01	3997.56	432 I .49	4647.81	4976.53
"	$28 \frac{1}{4}$	913.80	1147.29	1382.80	1620.35	1859.95	2101.61	$2345 \cdot 33$	2591.13	2839.01	3088.98	3341.05	3595.23	3851.53
"	$24 \frac{1}{4}$	675.30	848.46	1023.36	1200.02	1378.45	1558.66	1740.64	1924.42	2110.01	2297.40	${ }^{2486.61}$	2677.65	2870.53
"	$21 \frac{1}{4}$	520.05	653.87	789.22	926.12	1064.58	1204.60	${ }^{1} 346.19$	1489.37	1634.13	1780.50	1928.47	2078.06	2229.28
"	$18 \frac{1}{4}$	385.05	484.59	585.46	687.66	791.20	896.10	1002.36	1109.99	1219.01	1329.41	1441.21	${ }^{1554.41}$	1669.03
"	$15 \frac{1}{4}$	270.30	340.63	412.07	484.63	558.33	633.17	709.16	786.31	864.63	944.13	1024.82	1106.69	1189.78
	124	175.80	221.97	269.05	317.04	365.95	415.80	466.58	518.31	571.01	624.67	679.30	734.92	791.53

			d.	Thickness of Cover Plates in Inches.					
				$\frac{3}{8}$	$\frac{1}{2}$	5	$\frac{3}{4}$	$\frac{7}{8}$	I
6	$\frac{3}{4}$	17	$12 \frac{3}{4}$	-•••	746.14	950.36	. 1161.84	I380.70	1607.03
6	$\frac{5}{8}$	16	"	702.25	894.45	1093.50	1299.48	1512.50
6	$\frac{1}{2}$	15	"	- . . .	658.36	838.55	1025.16	I 218.27	1417.97
		14	*	614.47	782.65	956.8I	I 137.05	1 323.44
5	$\frac{5}{8}$	14	107	332.23	$45^{2.87}$	578.59	709.49	845.63	987.11
5	$\frac{5}{8}$	13	"	308.50	420.52	537.27	658.8 I	785.23	916.60
5	${ }^{\frac{1}{2}}$	14	$10 \frac{1}{2}$	310.45	423.50	541.47	664.45	792.52	925.75
5	$\frac{1}{2}$	13	"	288.27	393.25	502.80	616.99	735.91	859.63

H

(33)

Channel.		Ввам.		Total Sec.		Axis BB.		Axis AA.	
	$\begin{aligned} & \text { 苞 } \\ & \text { H } \\ & \text { B } \end{aligned}$			Weight.	Area.	I	r	I	r
15	55	15	42	152.00	44.84	875.02	4.42	2707.73	7.77
"	،	12	31.5	14 I .50	41.62	869.90	$4 \cdot 57$	1746.65	6.48
"	"	10	25	135.00	39.73	867.29	4.67	1243.72	5.60
"	"	9	21	131.00	38.67	865.56	$4 \cdot 73$	1026.18	5.15
"	"	8	18	128.00	37.69	864.18	4.79	834.02	4.70
"	"	7	15	125.00	36.78	863.07	4.84	$665 \cdot 33$	4.25
"	"	6	12.25	122.25	35.97	862.25	4.90	519.13	3.80
15	50	15	42	142.00	41.90	820.02	4.42	2492.35	7.71
"	"	12	31.5	131.50	38.68	814.90	4.59	${ }^{1} 599.82$	6.43
"	"	10	25	125.00	36.79	812.29	4.70	1135.25	$5 \cdot 55$
"	"	9	21	121.00	35.73	810.56	4.76	934.68	5.11
"	"	8	18	118.00	34.75	809.18	4.83	758.02	4.67
"	"	7	15	115.00	33.84	808.07	4.89	ט́o3.38	4.22
"	"	6	12.25	I 12.25	33.03	807.25	4.94	469.74	3.77
15	45	15	42	132.00	38.96	764.82	4.43	2281.22	7.65
"	"	12	31.5	121.50	35.74	759.70	4.61	1456.50	6.38
"	"	10	25	I 15.00	33.85	757.09	4.73	1029.78	$5 \cdot 52$
"	"	9	21	III. 00	32.79	$755 \cdot 36$	4.80	845.94	5.08
"	"	8	18	i 08.00	3 x .81	753.98	4.87	684.53	4.64
"	"	7	15	105.00	30.90	752.87	4.94	543.67	4.19
"	"	6	12.25	102.25	30.09	752.05	5.00	422.34	3.75
15	40	15	42	122.00	36.00	709.62	4.44	2074.14	$7 \cdot 59$
"	"	12	31.5	111.50	32.78	704.50	4.64	1316.71	6.34
"	"	IO	25	105.00	30.89	701.89	4.77	$927 \cdot 46$	$5 \cdot 48$
"	"	9	21	101.00	29.83	700.16	4.84	760.13	5.05
"	"	8	18	98.00	28.85	698.78	4.92	613.75	4.61
"	"	7	15	95.00	27.94	697.67	5.00	486.43	4.17
"	"	6	12.25	92.25	27.13	696.85	5.07	377.18	$3 \cdot 73$
15	35	15	42	112.00	33.06	654.62	4.45	1872.66	$7 \cdot 53$
"	"	12	31.5	101.50	29.84	649.50	4.67	1181.30	6.29
"	"	10	25	95.00	27.95	646.89	4.8 I .	828.75	$5 \cdot 45$
"	"	9	21	91.00	26.89	$645 \cdot 16$	4.90	$677 \cdot 56$	5.02
"	"	8	18	88.00	25.91	643.78	4.98	545.85	4.59
"	"		15	85.00	25.00	642.67	5.07	431.74	4.16
"	"	6	12.25	82.25	24.19	641.85	5.15	334.22	3.72

TKJ CHANNELS (FLANGES OUTSTANDING) AND ONE BEAM

Channel.		Beam.		Total Sec.		Axis BB.		Axis AA.	
$\begin{aligned} & \dot{\Delta} \\ & \stackrel{y}{\#} \end{aligned}$			$\begin{aligned} & \dot{5} \\ & \text { : } \\ & \text { B } \\ & 3 \end{aligned}$	Weight.	Area.	I	r	I	r
15	33	15	42	108.00	32.28	639.82	4.45	1820.21	7.51
"	"	12	31.5	97.50	29.06	634.70	4.67	1146.20	6.28
"	"	10	25	91.00	27.17	632.09	4.82	803.25	5.44
"	،	9	21	87.00	26.11	630.36	4.91	656.28	5.01
"	"	8	18	84.00	25.13	628.98	5.00	528.41	$4 \cdot 59$
،	"	7	15	81.00	24.22	627.87	5.09	417.74	4.15
"	"	6	12.25	78.25	23.41	627.05	5.18	323.27	3.72
12	40	12	31.5	I I 1.50	32.78	403.50	$3 \cdot 51$	1291.82	6.28
،	"	10	25	105.00	30.89	400.89	3.60	905.43	5.41
"	"	9	21	101.00	29.83	399.16	3.66	739.53	4.98
،	"	8	18	98.00	28.85	397.78	3.71	594.59	4.54
،	"	7	15	95.00	27.94	396.67	3.77	468.71	4.10
،	"	6	12.25	92.25	27.13	395.85	3.82	360.89	3.65
12	35	12	31.5	101.50	29.84	368.10	3.51	1149.78	6.21
،	"	10	25	95.00	27.95	365.49	3.62	801.14	5.35
"	"	9	21	91.00	26.89	363.76	3.68	651.90	4.92
"	"	8	18	88.00	25.91	362.38	3.74	522.15	4.49
"	"	7	15	85.00	25.00	361.27	3.80	409.99	4.05
"	"	6	12.25	82.25	24.19	360.45	3.86	314.43	3.61
12	30	12	31.5	91.50	26.90	332.90	3.52	1012.65	6.14
"	"	10	25	85.00	25.01	330.29	3.63	701.03	5.29
"	"	9	21	81.00	23.95	328.56	3.70	568.10	4.87
"	"	8	18	78.00	22.97	327.18	3.77	453.18	4.44
"	"	7	15	75.00	22.06	326.07	3.84	354.39	4.01
"	"	6	12.25	72.25	21.25	325.25	3.91	270.72	3.57
12	25	12	31.5	81.50	23.96	297.50	3.52	880.42	6.06
"	"	10	25	75.00	22.07	294.89	3.66	605.08	5.24
"	"	9	21	71.00	21.01	293.16	3.74	488.09	4.82
"	"	8	18	68.00	20.03	291.78	3.82	387.65	4.40
"	"	7	15	65.00	19.12	290.67	3.90	301.86	3.97
"	"	6	12.25	62.25	18.31	289.85	3.98	229.72	3.54
12	20.5	12	31.5	72.50	21.32	265.70	3.53	765.64	5.99
"	،	10	25	66.00	19.43	263.09	3.68	522.30	5.18
،	،	9	21	62.00	18.37	261.36	3.77	419.32	4.78
"	،	8	18	59.00	17.39	259.98	3.87	331.58	4.37
"	"	7	15	56.00	16.48	258.87	3.96	257.16	3.95
"	،	6	12.25	53.25	15.67	$25^{8.05}$	4.06	195.08	$3 \cdot 53$

Channel.		Вeam.		Total Sec.		Axis BB.		Axis AA.	
	$\begin{aligned} & \dot{4} \\ & \text { 㐌 } \\ & \text { H } \end{aligned}$	$\begin{aligned} & \dot{H} \\ & \text { H } \\ & \text { H } \\ & \text { H } \end{aligned}$	$\begin{aligned} & \dot{H} \\ & \text { 曅 } \\ & \text { M } \\ & B \end{aligned}$	Weight.	Area.	I	r	I	r
10	25	12	31.5	81.50	23.96	191.50	2.83	866.82	6.01
"	"	10	25	75.00	22.07	188.89	2.93	593.19	5.18
"	"	9	21	71.00	21.01	187.16	2.98	477.05	4.77
"	"	8	18	68.00	20.03	185.78	3.05	377.46	4.34
"	"	7	15	65.00	19.12	184.67	3.11	292.52	3.91
"	"	6	12.25	62.25	18.31	183.85	3.17	221.23	3.48
10	20	12	31.5	71.50	21.02	166.90	2.82	735.16	5.91
"	"	10	25	65.00	19.13	164.29	2.93	497.78	5.10
"	"	9	21	61.00	18.07	162.56	3.00	397.56	4.69
"	"	8	18	58.00	17.09	161.18	3.07	312.42	4.28
"	"	7	15	55.00	16.18	160.07	$3 \cdot 15$	240.45	3.86
"	"	6	12.25	52.25	15.37	159.25	3.22	180.67	3.43
10	15	12	31.5	61.50	18.18	143.30	2.81	61 3.56	5.81
"	"	10	25	55.00	16.29	140.69	2.94	410.34	5.02
"	،	9	21	51.00	15.23	138.96	3.02	325.07	4.62
"	"	8	18	48.00	14.25	137.58	3.11	253.46	4.22
"	"	7	15	45.00	13.34	136.47	3.20	193.61	3.81
"	"	6	12.25	42.25	12.53	I 35.65	3.29	144.52	3.40
9	20	10	25	65.00	19.13	128.49	2.59	493.82	. 5.08
"	"	9	21	61.00	18.07	126.76	2.65	393.88	4.67
"	"	8	18	58.00	17.09	125.38	2.71	309.02	4.25
"	"	7	15	55.00	16.18	124.27	2.77	237.34	3.83
"	"	6	12.25	52.25	15.37	123.45	2.83	177.84	$3 \cdot 40$
9	15	10	25	55.00	16.19	108.69	2.59	401.61	4.98
"	"	9	2 I	51.00	15.13	106.96	2.66	317.31	$4 \cdot 58$
"	"	8	18	48.00	14.15	105.58	2.73	246.62	4.17
"	"	7	15	45.00	13.24	104.47	2.81	187.64	3.76
"	"	6	12.25	42.25	12.43	103.65	2.89	1 39.37	$3 \cdot 35$
9	13.25	10	25	51.50	15.15	101.49	2.59	370.23	4.94
"	"	9	21	$47 \cdot 50$	14.09	99.76	2.66	291.35	$4 \cdot 55$
"	"	8	18	44.50	13.11	98.38	2.74	225.57	4.15
"	"	7	15	41.50	12.20	97.27	2.82	170.97	3.74
"	"	6	12.25	38.75	I 1.39	96.45	2.91	126.56	$3 \cdot 33$

TWO CHANNELS (FLANGES OUTSTANDING)
AND ONE BEAM

Channel.		Beam.		Total Sec.		Axis BB.		Axis AA.	
$\begin{aligned} & \dot{\tilde{E}} \\ & \stackrel{\text { H }}{⿷ 匚} \\ & \stackrel{y}{*} \end{aligned}$			$\begin{aligned} & \dot{5} \\ & \text { 를 } \\ & \text { B } \end{aligned}$	Weight.	Area.	I	r	I	r
8	16.25	9	21	53.50	15.87	84.96	2.31	332.84	4.58
،	،	8	18	50.50	14.89	83.58	2.37	258.90	4.17
،	"	7	15	47.50	13.98	82.47	2.43	197.03	3.75
"	"	6	12.25	44.75	13.17	8 I .65	2.49	146.25	3.33
8	13.75	9	21	48.50	14.39	$77 \cdot 16^{\prime \prime}$	2.32	294.63	4.52
"	،	8	I8	45.50	13.41	75.78	2.38	227.79	4.12
،	،	7	15	42.50	12.50	74.67	2.44	172.29	3.71
"	"	6	12.25	39.75	I 1.69	73.85	2.51	127.13	$3 \cdot 30$
8	11.25	9	21	43.50	13.01	69.76	2.32	260.19	4.47
"	،	8	18	40.50	12.03	68.38	2.38	199.86	4.08
"	"	7	I5	$37 \cdot 50$	II. 12	67.27	2.46	150.17	3.67
"	"	6	12.25	34.75	10.31	66.45	2.54	110.14	3.27
7	14.75	8	I8	47.50	14.01	58.18	2.04	238.21	4.12
"	،	7	15	44.50	13.10	57.07	2.09	180.32	3.71
"	،	6	12.25	41.75	12.29	56.25	2.14	I 33.07	3.29
7	12.25	8	18	42.50	12.53	52.18	2.04	206.90	4.06
"	"	7	15	39.50	II 1.62	51.07	2.10	155.40	3.66
"	"	6	12.25	36.75	10.8I	50.25	2.16	II 3.80	3.24
7	9.75	8	18	$37 \cdot 50$	II. 03	45.98	2.04	${ }_{1} 76.66$	4.00
"	،	7	15	34.50	10.12	44.87	2.11	131.47	3.60
"	"	6	12.25	31.75	9.31	44.05	2.18	95.43	3.20
6	13	7	15	41.00	12.06	37.27	1.76	161. 62	3.66
،	،	6	12.25	38.25	11.25	36.45	1.80	I 18.44	3.24
6	10.5	7	15	36.00	10.60	32.87	1.76	136.99	$3 \cdot 59$
،	"	6	12.25	33.25	9.79	32.05	1.8r	99.39	3.19
6	8	7	15	31.00	9.18	28.67	1.77	I 14.41	3.53
،	"	6	12.25	28.25	8.37	27.85	1.82	82.08	3.13

$\begin{aligned} & \dot{\hat{\lambda}} \\ & \dot{\hat{c}} \\ & \dot{x} \\ & \dot{x} \end{aligned}$	4	
	\square	
$\begin{aligned} & \dot{4} \\ & \dot{4} \\ & \stackrel{n}{x} \\ & \underset{4}{2} \end{aligned}$	4	｜
	－	
	－${ }^{\text {e2dy }}$	
	$\cdot 7 \varphi^{8!} \cdot \mathrm{M}$	
	$748!9 \mathrm{M}$	
	－¢ ${ }^{\text {dəa }}$	
$\begin{aligned} & \dot{\Delta} \\ & \stackrel{y}{4} \\ & \text { 品 } \end{aligned}$	748！${ }^{\text {\％}}$ M	
	\downarrow	
	－	
		以 6 O M N N
	－	 符 o o
	${ }^{7} \chi^{810} \mathrm{M}$	
$$	${ }^{7} 489$	
	${ }^{3} 48!9 \mathrm{M}$	
	－${ }^{\text {Td }}$（ ${ }^{\text {a }}$	

Веam "C."		Beam " E."		Total Section.		Axis Bb.		Axis AA.	
	$\dot{4}$ 렾 3	$\stackrel{\dot{\rightharpoonup}}{\stackrel{\rightharpoonup}{4}}$	\dot{E} 至 2	Weight.	Area.	I	r	I	r
15	60	20	65	185	54.42	1245.86	4.79	4967.10	9.55
"	"	18	55	175	51.27	1239.19	4.92	3900.79	8.72
"	"	15	42	162	47.82	1232.62	5.08	2640.95	7.43
"	"	12	31.5	151.5	44.60	1227.50	5.25	1668.14	6.12
15	50	20	65	${ }^{165}$	48.50	994.66	4.53	4310.13	9.43
"	،	18	55	155.	45.35	987.99	4.67	3360.74	8.61
،	"	15	42	142	41.90	981.42	4.84	2254.07	7.33
"	"	12	31.5	131.5	38.68	976.30	5.02	1407.79	6.03
15	45	20	65	155	$45 \cdot 56$	939.46	$4 \cdot 54$	3970.8x	$9 \cdot 34$
"	"	18	55	145	42.41	932.79	4.69	3081.51	8.52
"	"	15	42	132	38.96	926.22	4.88	2053.96	7.26
،	"	12	31.5	121.5	35.74	921.10	5.08	1273.57	5.97
15	42	20	65	149	44.04	911.26	$4 \cdot 55$	3798.22	9.29
"	،	18	55	I 39	40.89	904.59	4.70	2939.75	8.48
"	"	15	42	126	37.44	898.02	4.90	1952.74	7.22
"	"	12	31.5	115.5	34.22	892.90	5.1I	1206.05	5.94
12	40	18	55	135	39.6I	558.99	3.76	2840.59	8.47
"	"	15	42	122	36.16	$55^{2.42}$	3.91	1884.27	7.22
"	"	12	31.5	III. 5	32.94	547.30	4.08	I 162.51	5.94
12	35	18	55	125	36.51	$477 \cdot 79$	3.62	2564.45	8.38
"	"	15	42	112	33.06	471.22	3.78	1687.74	7.14
"	"	12	31.5	101. 5	29.84	466.10	3.95	1031. 64	5.88
12	31.5	18	55	118	34.45	452.79	3.63	2373.63	8.30
"	"	15	42	105	3 I .00	446.22	3.79	${ }^{1} 551.63$	7.07
"	"	12	31.5	94.5	27.78	441.10	3.98	940.98	5.82
10	30	18	55	115	33.57	289.59	2.94	2312.89	8.30
"	"	15	42	102	30.12	283.02	3.07	1510.36	7.08
"	"	12	31.5	91.5	26.90	277.90	3.21	915.2 I	5.83
10	25	18	55	105	30.67	265.39	2.94	2044.80	8.17
"	"	15	42	92	27.22	258.82	3.09	1319.23	6.96
"	"	12	31.5	81.5	24.00	253.70	3.25	787.99	5.73

(39)

TWO CHANNELS AND

Thickness of Pls.											$\frac{1}{2}$	
Area of 2-18' Pls.					11.25		13.50		15.75		18.00	
Smetion.		$\begin{array}{r} \text { Arra } \\ \text { or } 2 \text { [} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { B. TO } \\ \text { OF }[\mathrm{s} \\ \hline \end{array}$	Axis.	1	r	1	r	I	r	I	r
Channel.	Plate.											
15 "	$18^{\prime \prime}$	32.36	10.5	BB	1519.94	5.90	1658.37	6.01	1799.02	6.12	1941.90	6.21
55* $\}$				AA	1521.61	5.91	1582.36	5.87	1643.11	5.84	1703.86	5.82
	$18^{\prime \prime}$	$\overline{29.42}$	10.5	BB	1464.94	6.00	1603.37	6.11	1744.02	6.21	I886.90	6.31
50\#\#				AA	1404.10	5.88	1464.85	5.84	1525.60	5.81	1586.35	5.78
$15^{\prime \prime}$	$18^{\prime \prime}$	$\overline{26.48}$	10.75	BB	1409.74	6.11	1548.17	6.22	1688.82	6.32	1831.70	6.42
45\#				AA	1330.11	5.94	1390.86	5.90	1451.61	5.86	1512.36	5.83
	$18^{\prime \prime}$	23.52	II	B	I 354.54	6.24	1492.97	6.35	1633.62	6.45	1776.50	6.54
40\#\#				AA	1251.01	6.00	1311.76	5.95	1372.5. ${ }^{1}$	5.91	1433.26	5.88
$15^{\prime \prime}$ \}	$18^{\prime \prime}$	20.58	$\overline{11.25}$	BB	I 299.54	6.39	1437.97	6.50	${ }_{1} 578.62$	6.59	1721.50	6.68
35\# ${ }^{\text {a }}$				AA	1167.36	6.06	1228.11	6.00	1288.86	5.96	1349.61	5.91
	$18^{\prime \prime}$	$\overline{19.80}$	$\overline{11.25}$	BB	I 284.74	6.43	1423.17	6.54	1563.82	6.63	1706.70	6.72
33\#				AA	1136.04	6.05	1196.79	5.99	1257.54	5.95	1318.29	5.9 I
Thickness of Pls.					${ }_{16}{ }^{5}$		$\frac{3}{8}$		$\frac{7}{16}$		$\frac{1}{2}$	
Area of $2-16^{\prime \prime} \mathrm{Pls}$.					10.00		12.00		14.00		16.00	
	$16^{\prime \prime}$	32.36	8.5	B6	1446.6	5.84	15	5.95	1694.73	6.05	1821.73	6.14
55\% ${ }^{\text {\% }}$				AA	1070.51	5.03	1113.18	5.01	I 155.84	4.99	1198.51	4.98
	$16^{\prime \prime}$	29.42	8.5	BB	1391.66	5.94	${ }^{1} 514.71$	6.05	1639.73	6.15	1766.73	6.24
50."				AA	986.95	5.00	1029.62	4.99	1072.28	4.97	1114.95	4.95
	$16^{\prime \prime}$	26.48	8.75	BB	1336.46	6.05	1459.51	6.16	1584.53	6.26	1711.53	6.35
45\# ${ }^{\text {\# }}$				AA	939.78	5.08	982.45	5.05	1025.11	5.03	1067.78	5.01
	$16^{\prime \prime}$	23.52	9	BB	1281.26	6.18	1404.31	6.29	1529.33	8	1656.33	6.47
40\# ${ }^{\text {a }}$				AA	888.56	5.15	931.23	5.12	973.89	5.09	ıо16.56	5.07
	$16^{\prime \prime}$	20.58	9.25	BB	1226.26	6.33	I 349.31	6.44	1474.33	6.53	1601.33	6.62
35\# ${ }^{\text {a }}$				AA	833.52	5.22	876.19	5.19	918.85	5.15	961.52	5.13
	$16^{\prime \prime}$	19.80	9.25	BB	1211.46	6.38	1334.5 1	6.48	1459.53	6.57	${ }^{1} 586.53$	6.66
33*				AA	811.23	5.22	853.90	5.18	896.56	5.15	939.23	5.12
Thickness of Pls.					$\frac{1}{4}$		$\frac{5}{16}$		$\frac{3}{8}$		$\frac{7}{16}$	
Area of $2-16^{\prime \prime}$ Pls.					8.00		10.00		12.00		14.00	
$12^{\prime \prime}$	$16^{\prime \prime}$	23.52	8.75	BB	694.17	4.69	773.07	4.80	853.56	4.90	935.64	4.99
40\# ${ }^{\text {\% }}$				AA	794.96	5.02	837.63	5.00	880.30	4.98	922.96	4.96
$12^{\prime \prime}$ \}	$16^{\prime \prime}$	20.5	9	BB	658.77	4.80	737.67	4.91	818.16	5.01	900.24	5.10
35\# ${ }^{\text {\# }}$				AA	737.67	5.08	780.33	5.05	823.00	5.03	865.67	5.00
$\left.12^{\prime \prime}\right\}$	$16^{\prime \prime}$	$\overline{17.64}$	9.25	BB	623.57	4.93	702.47	5.04	782.96	5.14	865.04	5.23
30\%				AA	676.97	5.14	719.63	5.10	762.30	5.07	804.97	5.04
$12^{\prime \prime}$	$16^{\prime \prime}$	14.70	9.5	BB	588.17	5.09	667.07	5.20	747.56	5.29	829.64	$5 \cdot 38$
25\# ${ }^{\text {\# }}$				AA	612.83	5.20	655.50	5.15	698.17	5.11	740.83	5.08
	$16^{\prime \prime}$	12.06	9.75	BB	556.37	5.27	635.27	$5 \cdot 37$	715.76	5.45	797.84	$5 \cdot 53$
$20.5\}$				AA	553.86	5.25	596.52	5.20	639.19	5.15	681.86	5.12
Thickness of Pls.					$\frac{1}{4}$		$\frac{5}{16}$		$\frac{3}{8}$		$\frac{7}{16}$	
Area of 2-14 ${ }^{\prime \prime}$ Pls.					7.00		8.75		10.50		12.25	
$12^{\prime \prime}$	$14^{\prime \prime}$	23.52	6.75	BB	656.65	4.64	725.69	4.74	796.12	4.83	867.94	4.93
40\#3				AA	522.39	4.14	550.97	4.13	579.55	4.13	608.13	4.12
12' $\}$	$14^{\prime \prime}$	20.58	7	BB	621.25	4.75	690.29	4.85	760.72	4.95	832.54	5.04
35\#				AA	488.13	4.21	516.71	4.20	545.29	4.19	573.88	4.18

TWO COVER PLATES

TABLE 23 (Continued)

TWO CHANNELS AND

Thickness of Pls.						$\frac{5}{16}$					
Area of 2-14 ${ }^{\prime \prime}$ Pls.				7.00		8.75		10.50		12.25	
Section.	$\begin{gathered} \text { Area } \\ \text { of } 2[\mathrm{~s} \\ \hline \end{gathered}$	$-\begin{gathered} \text { B. TO }{ }^{\text {B }} \\ \text { OF [} \mathrm{s} \\ \hline \end{gathered}$	Axis.	I		I	r	I	r	I	r
Channel. 1 Plate.											
$\left.12^{\prime \prime}\right\}$ I $4^{\prime \prime}$	17.64	7.25	BB	586.05	4.88	655.09	4.98	725.52	5.08	$797 \cdot 34$	5.16
30\#			AA	451.22	4.28	479.80	4.26	508.39	4.25	536.97	$4 \cdot 24$
$\left.12^{\prime \prime}\right\} \quad 14^{\prime \prime}$	14.70	7.5	BB	550.65	5.04	619.69	5.14	690.12	5.23	761.94	$5 \cdot 32$
25\#			AA	411.62	$4 \cdot 36$	440.20	$4 \cdot 33$	468.79	4.3 I	$497 \cdot 37$	$4 \cdot 30$
$\left.12^{\prime \prime}\right\} .14{ }^{\prime \prime}$	12.06	7.75	BB	518.85	5.22	587.89	$5 \cdot 3^{2}$	658.32	$5 \cdot 40$	730.14	$5 \cdot 48$
20.5\#			AA	375.02	4.44	403.60	4.40	432.18	4.38	460.77	4.35
Thickness of Pls.				\cdots		$\frac{5}{16}$		$\frac{3}{8}$		$\frac{7}{16}$	
Area of 2-14 ${ }^{\prime \prime}$ Pls.				7.00		8.75		10.50		12.25	
$\left.10^{\prime \prime}\right\} 14^{\prime \prime}$	14.70	8	BB	365.89	4.11	414.70	4.21	464.68	4.29	515.83	$4 \cdot 37$
25\#			AA	434.89	4.48	463.48	4.45	492.06	$4 \cdot 42$	520.64	4.40
$\left.10^{\prime \prime}\right\} \quad 14^{\prime \prime}$	11.76	3.25	BB	341.29	4.27	390.10	4.36	440.08	4.45	491.23	$4 \cdot 5^{2}$
20\#			$\mathbf{A A}$	$3^{8} 3.58$	4.52	412.17	4.48	440.75	4.45	469.33	$4 \cdot 42$
$\left.10^{\prime \prime}\right\} \quad 14^{\prime \prime}$	8.92	8.5	BB	317.69	4.47	366.50	4.55	416.48	4.63	467.63	4.70
15\#			AA	332.14	4.57	360.72	4.52	$389 \cdot 31$	4.48	417.89	4.44
Thickness of Pls.				$\frac{1}{4}$		$\frac{5}{16}$		$\frac{3}{8}$		$\frac{7}{16}$	
Area of 2-12' Pls.				6.00		7.50		9.00		10.50	
$10^{\prime \prime}$ " $\mathbf{1 2}^{\prime \prime}$	14.70	6	BB	339.62	4.05	38 I .46	4.15	424.30	4.23	468.14	$4 \cdot 31$
25\# ${ }^{\prime \prime}$			AA	271.43	3.62	289.43	3.61	307.43	3.60	325.43	3.59
$\left.10^{\prime \prime}\right\} \quad 12^{\prime \prime}$	11.76	6.25	BB	315.02	4.21	356.86	4.30	399.70	4.39	443.54	4.46
20\#			AA	241.67	3.69	259.67	3.67	277.67	3.66	295.67	3.64
$10^{\prime \prime}$ ($122^{\prime \prime}$	8.92	6.5	BB	291.42	4.42	333.26	4.5 I	376.10	$4 \cdot 58$	419.94	4.65
15\#			AA	2 II. 51	3.77	229.51	3.74	247.5I	3.72	265.51	3.70
Thickness of Pls.				$\frac{1}{4}$		$\frac{5}{16}$		$\frac{3}{8}$		$\frac{7}{16}$	
Area of 2-12 ${ }^{\prime \prime}$ Pls.				6.00		7.50		9.00		10.50	
$\left.9^{\prime \prime}\right\} \quad 12^{\prime \prime}$	11.76	6.25	BB	249.97	3.75	284.26	3.84	319.46	3.92	355.57	4.00
20\#			AA	238.77	3.67	256.77	3.65	274.77	3.64	292.77	3.63
$\left.9^{\prime \prime}\right\} \quad 12{ }^{\prime \prime}$	8.82	6.5	BB	230.17	3.94	264.46	4.03	299.66	4.10	335.77	4.17
15\# ${ }^{\text {\# }}$			$\mathbf{A A}$	205.96	3.73	223.96	3.70	241.96	3.68	259.96	3.67
$\left.9^{\prime \prime}\right\} \quad 12^{\prime \prime}$	7.78	6.75	BB	222.97	4.02	257.26	4.10	292.46	4.17	328.57	4.24
[3.25			AA	198.90	3.80	216.90	3.77	234.90	3.74	252.90	3.72
Thickness of Pls.				$\frac{1}{4}$		$\frac{5}{16}$		$\frac{3}{8}$		$\frac{7}{16}$	
Area of 2-II" Pls.				5.50		6.88		8.25		9.63	
$\left.9^{\prime \prime}\right\} \quad 1 \mathrm{I}^{\prime \prime}$	11.76	5.25	BB	239.28	3.72	270.71	3.81	302.97	3.89	336.07	3.96
20\# ${ }^{\text {2 }}$			AA	181.53	3.24	195.40	3.24	209.26	3.23	223.13	3.23
9"1 $1 \mathrm{I}^{\prime \prime}$	8.82	5.50	BB	219.48	3.91	250.91	4.00	283.17	4.07	316.27	4.14
15\#			$\mathbf{A A}$	157.75	3.32	171.61	3.31	185.48	3.30	199.34	3.29
$\left.9^{\prime \prime}\right\}$ II'	7.78	5.75	BB	212.28	4.00	243.71	4.08	275.97	4.15	309.07	4.21
13.25			AA	$\underline{153.33}$	3.40	167.19	3.38	181.05	3.36	194.92	$3 \cdot 35$
Thickness of Pls.				$\frac{1}{4}$		$\frac{5}{16}$		$\frac{3}{8}$		$\frac{7}{16}$	
Area of 2-12 ${ }^{\prime \prime}$ Pls.				6.00		7.50		9.00		10.50	
[$8^{\prime \prime}$ ($12^{\prime \prime}$	9.56	6.50	BB	181.92	3.42	209.42	3.50	237.72	3.58	266.84	3.65
16.25			AA	214.04	3.71	232.04	3.69	250.04	3.67.	268.04	3.66

TABLE 23 (Continued)

TWO COVER PLATES

TABLE 23 (Continued)

TWO CHANNELS AND

Thickness of Pls.					$\frac{1}{4}$		$\frac{5}{16}$		复	
Area of 2-12 ${ }^{\prime \prime}$ Pls.					6.00		7.50		9.00	
Section		$\begin{array}{c\|c} \hline \text { Area } & \text { B. To } \mathrm{b} \\ \text { of } 2 \text { [s. } & \text { of [s. } \\ \hline \end{array}$		Axis.	I	r	I	r	I	r
Channel.	Plate.									
$8^{\prime \prime}$ \}	$12^{\prime \prime}$	8.08	6.75	BB	174.12	$3 \cdot 5{ }^{2}$	201.62	3.60	229.92	3.67
13.75				AA	200.02	3.77	218.02	3.74	236.02	3.72
	$12^{\prime \prime}$	6.70	7	BB	166.72	3.62	194.22	3.70	222.52	3.76
11.25				AA	185.97	3.83	203.97	3.79	221.97	3.76
Thickness of Pls.					$\frac{1}{4}$		$\frac{5}{15}$		$\frac{3}{8}$	
Area of 2-10 ${ }^{\prime \prime} \mathrm{Pls}$.					5.00		6.25		7.:0	
	$10^{\prime \prime}$	9.56	4.50	BB	164.90	3.37	7.82	3.45	211.40	$3 \cdot 5^{2}$
16.25				AA	120.50	2.88	130.91	2.88	141.33	2.88
8' $\}$	$10^{\prime \prime}$	8.08	4.75	BB	${ }^{1} 57.10$	3.47	180.02	3.54	203.60	3.61
13.75				AA	114.23	2.96	124.64	2.95	1 35.06	2.94
8' $\}$	$10^{\prime \prime}$	6.70	5	BB	149.70	3.58	172.62	3.65	196.20	3.72
11.25				AA	107.72	3.03	118.14	3.02	128.55	3.01
Thickness of Pls.					$\frac{1}{4}$		$\frac{5}{16}$		$\frac{3}{8}$	
Area of 2-10" Pls.					5.00		6.25		7.50	
	$10^{\prime \prime}$	8.68	4.75	BB	120.13	2.96	138.00	3.04	${ }^{1} 56.47$	3.11
14.75				AA	117.97	2.94	128.39	2.93	138.80	2.93
	$10^{\prime \prime}$	7.20	5	BB	114.13	3.06	I 32.00	3.13	150.47	3.20
12.25				AA	110.06	3.00	120.48	2.99	130.90	2.98
7" $\}$	$10^{\prime \prime}$	$5 \cdot 70$	5.25	BB	107.93	3.18	125.80	3.24	144.27	$3 \cdot 31$
9.75				AA	100.94	3.07	III. 36	3.05	121.77	3.04
Thickness of Pls.					$\frac{1}{4}$		$\frac{5}{16}$		$\frac{3}{8}$	
Area of 2-9 ${ }^{\prime \prime}$ Pls.					4.50		5.63		6.75	
$7{ }^{\prime \prime}$ \}	$9^{\prime \prime}$	8.68	$3 \cdot 75$	BB	113.55	2.94	129.64	3.01	146.26	3.08
14.75				AA	83.59	2.52	91.18	2.52	98.78	2.53
$7^{\prime \prime}$	$9{ }^{\prime \prime}$	7.20	4	BB	107.55	3.03	123.64	3.10	140.26	3.17
12.25 \}				AA	78.77	2.59	86.36	2.59	93.96	2.60
$\left.7{ }^{\prime \prime}\right\}$	$9{ }^{\prime \prime}$	$5 \cdot 70$	4.25	BB	101.35	3.15	117.44	3.22	134.06	3.28
9.75				AA	73.00	2.68	80.59	2.67	88.19	2.66
Thickness of Pls.					$\frac{1}{4}$		$\frac{5}{16}$		$\frac{3}{8}$	
Area of 2-10 ${ }^{\prime \prime}$ Pls.					5.00		6.25		7.50	
	$10^{\prime \prime}$	7.64	5	BB	83.45	2.57	96.91	2.64	I 10.89	2.71
13\#				AA	113.35	2.99	123.76	2.98	134.18	2.98
$\left.6^{\prime \prime}\right\}$	$10^{\prime \prime}$	6.18	5.25	BB	79.05	2.66	92.51	2.73	106.49	2.79
10.5\#				AA	103.89	3.05	114.3 I	3.03	124.73	3.02
$\left.6^{\prime \prime}\right\}$	$10^{\prime \prime}$	4.76	$5 \cdot 5$	BB	74.85	2.77	88.31	2.83	102.29	2.89
8\#3				AA	93.87	3.10	104.29	3.08	114.70	3.06
Thickness of Pls.					$\frac{1}{4}$		$\frac{5}{16}$		$\frac{3}{8}$	
Area of 2-8' ${ }^{\prime \prime}$ Pls.					4.00		5.00		6.00	
6"	$8{ }^{\prime \prime}$	7.64	3	BB	73.68	2.52	84.45	2.58	95.63	2.65
13\#				AA	54.55	2.16	59.89	2.18	65.22	2.19
$6^{\prime \prime}$	$8^{\prime \prime}$	6.18	3.25	BB	69.28	2.61	80.05	2.68	91.23	2.74
10.5\#				AA	51.08	2.24	56.41	2.25	61.75	2.25
$6^{\prime \prime}$ \}	$8^{\prime \prime}$	4.76	$3 \cdot 5$	BB	65.08	2.73	75.85	2.79	87.03	2.84
8\#				AA	47.19	2.32	52.53	2.32	57.86	2.32

TWO COVER PLATES

$\frac{5}{16}$		$\frac{1}{2}$		$\frac{9}{16}$		$\frac{5}{8}$	
10.50		12.00		13.50		15.00	
I	-	1	r	I	r	I	r
259.04	3.73	289.00	3.79	319.80	3.85	351.45	3.90
254.02	3.70	272.02	3.68	290.02	3.67	308.02	3.65
251.64	3.82	281.60	3.88	312.40	3.93	344.05	3.98
239.97	3.74	257.97	3.71	275.97	3.70	293.97	3.68
${ }^{7}{ }^{7}$		$\frac{1}{2}$		$\frac{9}{16}$		8	
8.75		10.00		11.25		12.50	
235.67	3.59	260.63	3.65	286.30	3.71	312.68	3.76
${ }^{1} 51.75$	2.88	162.16	2.88	${ }^{172.58}$	2.88	183.00	2.88
227.87	3.68	$25^{2.83}$	3.74	278.50	3.80	304.88	3.85
145.48	2.94	${ }^{1} 55.89$	2.94	166.31	2.93	176.73	2.93
220.47	3.78	245.43	3.83	271.10	3.89	297.48	3.94
138.97	3.00	149.39	2.99	159.80	2.98	170.22	2.98
$\frac{7}{16}$		$\frac{1}{2}$		$\frac{9}{16}$			
8.75		10.00		II. 25			
${ }^{1} 75.54$	3.17	195.23	3.23	215.55	3.29		
149.22	2.93	${ }^{1} 59.64$	2.92	170.05	2.92		
169.54	3.26	189.23	3.32	209.55	3.37		
141.31	2.98	151.73	2.97	162.15	2.96		
163.34	3.36	183.03	3.41	203.35	3.46		
132.19	3.02	142.61	3.01	153.02	3.00		
$\frac{7}{16}$		$\frac{1}{2}$		$\frac{9}{16}$			
7.88		9.00		10.13			
163.43	3.14	181.15	3.20	199.43	3.26		
106:37	2.53	113.96	2.54	121.56	2.54		
${ }^{1} 57.43$	3.23	175.15	3.29	193.43	3.34		
101. 55	2.60	109.14	2.60	116.74	2.60		
151.23	3.34	168.95	3.39	187.23	3.44		
95.78	2.66	103.38	2.65	110.97	2.65		
$\frac{7}{16}$		$\frac{1}{2}$		$\frac{9}{16}$			
8.75		10.00		II 1.25			
125.39	2.77	140.43	2.82	${ }^{1} 56.02$	2.87		
144.60	2.97	155.01	2.96	165.43	2.96		
120.99	2.85	136.03	2.90	${ }^{1} 51.62$	2.95		
1 35.14	3.01	145.56	3.00	155.98	2.99		
116.79	2.94	131.83	2.99	147.42	3.03		
125.12	3.04	I 35.54	3.03	145.95	3.02		
$\frac{7}{16}$		$\frac{1}{2}$		${ }_{1} 9$			
7.00		8.00		9.00		-	
107.23	2.71	119.27	2.76	131.74	2.81		
70.55	2.20	75.89	2.20	81.22	2.21		
102.83	2.79	114.87	2.85	127.34	2.90		
67.08	2.26	72.41	2.26	77.75	2.26		
98.63	2.90	110.67	2.94	123.14	2.99		
63.20	2.32	68.53	2.32	73.86	2.32		

TABLE 24

(46)
TABLE 24 （Continued）

$\begin{aligned} & 4 \\ & 4 \\ & \frac{n}{x} \\ & \frac{n}{4} \end{aligned}$	－			
	m			
	－		ウ் $\dot{m} \dot{m}$	人のon o $\dot{\mathrm{m}} \dot{\mathrm{m}} \dot{\mathrm{m}} \dot{\mathrm{m}} \dot{\mathrm{m}} \dot{\mathrm{m}} \dot{\mathrm{m}} \dot{\mathrm{m}} \dot{\mathrm{m}}$
	m			
	0		$\stackrel{N}{\sim}$	
$\begin{gathered} \text { •Stannvel } \\ \cdot \mathrm{g} \text { ó } \end{gathered}$			 $0^{\circ} \infty 0^{\circ} 0^{\circ} \dot{0}^{\circ}$	
－NoIx．as ao vyav TVIOL				
$\begin{aligned} & \dot{C} \\ & \frac{n}{x} \\ & \frac{n}{4} \end{aligned}$	\cdots			
	\cdots			
$\begin{aligned} & \dot{\sim} \\ & \dot{\sim} \\ & \dot{n} \\ & \stackrel{n}{x} \end{aligned}$	4			
	－			か o ©
	－			
$\begin{gathered} \text { •stgnnvij } \\ \text { do } \\ \text {-q ox } \cdot \mathrm{a} \\ \hline \end{gathered}$			ハルパルッル $0^{\circ} \infty$ ○ 0 － 0	
－noizass до vyay TVIOL				
思新				
	${ }^{7} 4895$		$\underset{\sim}{\underset{\sim}{\mu}}=\underset{H}{\infty}==$	$\underset{\sim}{n}=\underset{\sim}{\circ}=\underset{\sim}{0}=\underset{\sim}{n}=:$
	${ }^{\text {¢ }}$ ¢ ${ }^{\text {d }}$ ¢ ${ }^{\text {d }}$	$\infty= \pm \infty=$ こ	$a=: a==$	

TABLE 24 （Continued）

$\begin{aligned} & \dot{<} \\ & \dot{4} \\ & \dot{n} \\ & \dot{4} \end{aligned}$	4			
	－		 	
	4		$\infty \infty \infty$ in in in in in	솟옷옷的的 \dot{n} in in
	－			
	－		N゙¢	¢
－norvoss но vaxy TVLOL				$\underset{\sim}{\dot{N}} \dot{\mathrm{~m}} \dot{\mathrm{~m}} \dot{\mathrm{~N}}$
$\begin{aligned} & \dot{C} \\ & \dot{k} \\ & \text { n } \\ & \text { 安 } \end{aligned}$	－	 		
	\square	が성 성 $\dot{\sim}$ 		
$\begin{aligned} & \dot{\sim} \dot{\sim} \\ & \text { n } \\ & \stackrel{n}{k} \end{aligned}$	\pm		$\circ \infty \infty \infty \infty$ in in in in in in	옷Nㅇㅇㅇㅇ in in in in in
	－			
	－	M゚彑		
			๗ N N N N N N N N	
$\begin{aligned} & \text { - Noilvas } \\ & \text { do va\&y } \\ & \text { TVLOLL } \end{aligned}$			ท 10 웅 $n_{0}^{\infty} \infty$ $\stackrel{\sim}{\sim} \stackrel{\infty}{\sim} \underset{\sim}{\infty} \infty_{\sim}^{\infty} \dot{N}^{\infty}$	
$\begin{array}{\|c\|} \hline \dot{M} \\ \text { 号 } \\ \text { 号 } \\ \text { 出 } \\ \hline \end{array}$		$\stackrel{N}{\dot{N}}=: N=: \underset{N}{N}=:$	${ }_{m}=={ }_{N}^{n}==$	$\dot{\sim}$
	d	$\underset{H}{N}=: \underset{H}{N}=\underset{H}{N}=\leq$	$\underset{\sim}{n}=\mathrm{n}_{\boldsymbol{H}}$	

ONE CHANNEL AND ONE PLATE G EQUALS GAUGE OF CHANNEL

Chansel.		范	Area op Section.	Axis AA.			Axis Bb.			G
玄										
				e	I	r	e^{\prime}	I	r	
9	13.25	$8 \times \frac{3}{8}$	6.89	2.04	84.55	$3 \cdot 50$. 94	18.77	1. 65	$1 \frac{3}{8}$
*	"	$8 \times \frac{5}{16}$	6.39	1.82	80.31	$3 \cdot 55$.91	16.00	1.58	
،	"	$8 \times \frac{1}{4}$	5.89	1.57	75.56	$3 \cdot 58$. 87	13.22	1.50	"
8	II 1.25	$8 \times \frac{3}{8}$	6.35	1.98	60.08	3.08	. 89	18.05	1.69	$1 \frac{1}{4}$
"	"	$8 \times \frac{5}{16}$	5.85	1.78	57.05	3.12	. 86	${ }^{15} 5.31$	1. 62	"
6	"	$8 \times \frac{1}{4}$	5.35	${ }^{3} .54$	53.62	$3 \cdot 17$. 83	12.57	1.53	"
7	9.75	$8 \times \frac{5}{16}$	5.35	1.71	38.92	2.70	. 88	14.97	1. 67	$1 \frac{1}{4}$
"	،	$8 \times \frac{1}{4}$	4.85	1. 49	36.55	2.74	. 84	12.23	1. 59	"
"	،	$7 \times \frac{5}{16}$	5.04	1.59	37.66	2.73	. 85	10.52	1.45	"
"	"	$7 \times \frac{1}{4}$	4.60	1.38	$35 \cdot 36$	2.77	.8I	8.67	1.37	"
6	8	$7 \times \frac{5}{16}$	4.57	1.51	24.37	2.31	.81	10.05	1. 48	$1 \frac{1}{8}$
"	*	$7 \times \frac{1}{4}$	4.13	1.32	22.86	2.35	.77	8.22	1.41	"
"	"	$6 \times \frac{1}{4}$	3.88	I. 21	21.99	2.38	. 75	$5 \cdot 54$	1.19	"

TABLE 26

ONE CHANNEL AND ONE ANGLE

LONG LEG OF ANGLE PERPENDICULAR TO WEB OF CHANNEL
back Of angle flush with flange of channel

Channel.		Size of Angle.	Total Area.	Axis BB.			Axis AA.		
亳				e^{\prime}.	I	r	e	I	r
12	20.5	$5 \times 3 \frac{1}{2} \times \frac{5}{16}$	8.59	1.54	${ }_{1} 78.67$	4.56	$+.02$	19.97	1.52
"	،	$4 \times 3 \times \frac{5}{16}$	8.12	1. 35	172.37	4.61	+.20	13.28	1.28
10	15	$5 \times 3 \frac{1}{2} \times \frac{5}{16}$	7.02	1.52	97.77	3.73	-. 17	16.98	1.56
،	"	$4 \times 3 \times \frac{5}{16}$	6.55	I. 35	94.13	$3 \cdot 79$	+. 03	10.81	1.28
9	13.25	$5 \times 3 \frac{1}{2} \times \frac{5}{16}$	6.45	1.45	70.70	$3 \cdot 31$	$-.26$	15.82	1.57
"	،	$4 \times 3 \times \frac{5}{16}$	5.98	I.3I	67.97	$3 \cdot 37$	$-.05$	9.89	1.29
8	II. 25	$4 \times 3 \times \frac{5}{16}$	5.44	$\stackrel{.}{1.24}$	$47 \cdot 46$	2.95	-. 13	9.05	1.29
"	،	$3 \times 2 \frac{1}{2} \times \frac{1}{4}$	4.66	$\cdot 94$	43.55°	3.06	+.16	4.58	. 99
7	9.75	$4 \times 3 \times \frac{5}{16}$	4.94	1.16	3 I .80	2.54	$-.22$	8.29	1.30
"	،	$3 \times 2 \frac{1}{2} \times \frac{1}{4}$	4.16	. 89	29.08	2.64	+.09	4.05	. 99
6	8	$4 \times 3 \times \frac{5}{16}$	4.47	1.05	20.23	2.13	-.31	$7 \cdot 59$	1. 30
"	"	$3 \times 2 \frac{1}{2} \times \frac{1}{4}$	3.69	. 83	18.37	2.23	+.01	$3 \cdot 59$. 99

TABLE 27

FOUR ANGLES, ONE PLATE, AND ONE CHANNEL

Back to back of Angles = width of Plate $+l^{\prime \prime}$
L indicates long leg of Angles " E " in contact with channel
S indicates short leg of Angles " E "' in contact with channel

$\left\|\begin{array}{c} \text { Size } \\ \text { OF } \\ \text { OLATE } \end{array}\right\|$	Size of Angles " C."	Size of Angles "E."	Channel.		Total Area.	Axis AA.		Axis BB.			\%
			$\stackrel{\text { İ }}{\stackrel{\rightharpoonup}{\mathrm{O}}}$			I	r	I	r	e	
$36 \times \frac{5}{8}$	$6 \times 6 \times \frac{5}{8}$	$6 \times 6 \times \frac{5}{8}$	15	33	60.84	528.62	2.95	12785.41	14.50	15.64	
$36 \times \frac{1}{2}$	$6 \times 6 \times \frac{1}{2}$	$6 \times 6 \times \frac{1}{2}$	15	33	50.90	478.29	3.07	10759.02	14.54	15.08	
$36 \times \frac{3}{8}$	$6 \times 6 \times \frac{3}{8}$	$6 \times 6 \times \frac{3}{8}$	I5	33	40.84	432.56	3.25	8625.16	14.53	14.23	
$30 \times \frac{5}{8}$	$6 \times 6 \times \frac{5}{8}$	$6 \times 6 \times \frac{5}{8}$	15	33	57.09	528.50	3.04	8389.78	12.12	12.97	
$30 \times \frac{1}{2}$	$6 \times 6 \times \frac{1}{2}$	$6 \times 6 \times \frac{1}{2}$	15	33	47.90	478.22	3.16	7074.84	12.15	12.48	
$30 \times \frac{3}{8}$	$6 \times 6 \times \frac{3}{8}$	$6 \times 6 \times \frac{3}{8}$	15	33	38.59	432.54	$3 \cdot 35$	5682.11	12.14	11.75	
$30 \times \frac{5}{8}$	$6 \times 4 \times \frac{5}{8}$	$6 \times 4 \times \frac{5}{8}$	15	33	52.09	526.11	3.18	784 I .38	12.27	12.73	I.
$30 \times \frac{1}{2}$	$6 \times 4 \times \frac{1}{2}$	$6 \times 4 \times \frac{1}{2}$	15	33	43.90	477.85	3.30	6618.33	12.28	12.20	L
$30 \times \frac{3}{8}$	$6 \times 4 \times \frac{3}{8}$	$6 \times 4 \times \frac{3}{8}$	15	33	35.59	431.97	3.48	5327.84	12.23	17.43	L
$24 \times \frac{1}{2}$	$6 \times 4 \times \frac{1}{2}$	$6 \times 4 \times \frac{1}{2}$	15	33	40.90	477.78	3.42	$3997 \cdot 71$	9.89	. 69	L
$24 \times \frac{3}{8}$	$6 \times 4 \times \frac{3}{8}$	$6 \times 4 \times \frac{3}{8}$	15	33	33.34	431.94	3.60	3224.18	9.83	9.04	L
$24 \times \frac{1}{2}$	$5 \times 3 \frac{1}{2} \times \frac{1}{2}$	$5 \times 3 \frac{1}{2} \times \frac{1}{2}$	12	20.5	34.03	196.38	2.40	3193.45	9.69	10.51	S
$24 \times \frac{3}{8}$	$5 \times 3 \frac{1}{2} \times \frac{3}{8}$	$5 \times 3 \frac{1}{2} \times \frac{3}{8}$	12	20.5	27.23	176.53	2.55	2572.07	9.72	9.98	S
$24 \times \frac{1}{2}$	$6 \times 4 \times \frac{1}{2}$	$4 \times 3 \times \frac{1}{2}$	12	20.5	34.03	237.14	2.64	3387.15	9.98	11.28	L
$24 \times \frac{3}{8}$	$6 \times 4 \times \frac{3}{8}$	$4 \times 3 \times \frac{3}{8}$	12	20.5	27.21	206.43	2.75	2738.78	10.03	10.71	L
$2 \mathrm{I} \times{ }_{2}$	$6 \times 4 \times \frac{1}{2}$	${ }^{6} \times 4 \times \frac{1}{2}$	I5	33	39.40	$477 \cdot 75$	3.48	2958.90	8.67	8.46	L
$21 \times \frac{3}{8}$	$6 \times 4 \times \frac{3}{8}$	$6 \times 4 \times \frac{3}{8}$	15	33	32.22	431.93	3.66	2389.51	8.61	7.88	L
$2 \mathrm{I} \times \frac{1}{2}$	$5 \times 3 \frac{1}{2} \times \frac{1}{2}$	$5 \times 3 \frac{1}{2} \times \frac{1}{2}$	12	20.5	32.53	196.35	2.46	2348.64	8.50	9.20	S
$21 \times \frac{3}{8}$	$5 \times 3 \frac{1}{2} \times \frac{3}{8}$	$5 \times 3 \frac{1}{2} \times \frac{3}{8}$	12	20.5	26.11	176.51	2.60	1895.95	8.52	8.72	S
$2 \mathrm{I} \times \frac{1}{2}$	$6 \times 4 \times \frac{1}{2}$	$4 \times 3 \times \frac{1}{2}$	12	20.5	32.53	237.11	2.70	2505.38	8.78	9.87	L
$2 \mathrm{I} \times \frac{3}{8}$	$6 \times 4 \times \frac{3}{8}$	$4 \times 3 \times \frac{3}{8}$	12	20.5	26.09	206.4I	2.81	2029.79	8.82	9.36	L
$18 \times \frac{1}{2}$	$6 \times 4 \times \frac{1}{2}$	$6 \times 4 \times \frac{1}{2}$	15	33	37.90	$477 \cdot 72$	3.55	2091.22	$7 \cdot 43$	7.25	L
$18 \times \frac{3}{8}$	$6 \times 4 \times \frac{3}{8}$	$6 \times 4 \times \frac{3}{8}$	15	33	31.09	431.92	$3 \cdot 73$	1691.84	$7 \cdot 38$	6.75	L
$18 \times \frac{1}{2}$	$6 \times 4 \times \frac{1}{2}$	$4 \times 3 \times \frac{1}{2}$	10	15	29.46	161.98	2.34	1626.05	$7 \cdot 43$	8.95	S
$18 \times \frac{3}{8}$	$6 \times 4 \times \frac{3}{8}$	$4 \times 3 \times \frac{3}{8}$	10	15	23.39	135.08	2.40	1315.82	7.50	8.57	S
I $5 \times \frac{1}{2}$	$6 \times 4 \times \frac{1}{2}$	$4 \times 3 \times \frac{1}{2}$	10	15	27.96	161.94	2.41	1070.58	6.19	$7 \cdot 50$	S
$15 \times \frac{3}{8}$	$6 \times 4 \times \frac{3}{8}$	$4 \times 3 \times \frac{3}{8}$	10	I5	22.27	1 35.07	2.46	870.01	6.25	7.17	S

(51)

SECTIONS OF COLUMNS, SECTIONS OF TOP CHORDS,

Selected from some of the Largest Buildings

and Bridges in the United States

The values of the sections covered by the tables on Moments of Inertia and Radii of Gyration are suitable for structures of ordinary proportions. The variety of ways in which standard shapes are used to compose sections of monumental structures, has made it necessary to treat this class separately. The sections here given are selected from some of the largest buildings and bridges in the United States. The types show what is customary as well as what can be done when circumstances and conditions demand it. It is necessary to be acquainted with these conditions in order to compare intelligently the values of these sections. They are classified and tabulated here in order to more readily serve as a guide in the design of new structures.
TABLE 28

Name of Building.	Arba.	Weight.	Axis AA.		Axis Bb.	
			I	r	I	r
Columns having One web Plate.						
First National Bank Building, Chicago	159.11	541.0	11470	8.49	3140	4.44
Frick Building, Pittsburg	172.61	586.9	${ }^{1} 3180$	8.74	3510	4.51
Column 43 C. \& N. W. R'y Office Building, Chicago	${ }^{134.51}$	457.3	6120	6.74	2080	3.93
Column 24 C. \& N. W. R'y Office Building, Chicago	175.50	596.7	9160	7.23	3850	4.69
Land Title Building, Philadelphia Columns having Two Web Plates.	198.98	676.5	15580	8.85	4040	4.50
Rock Island R'y Station, Chicago	57.74	196.3	1660	$5 \cdot 36$	1120	4.40
Park Row Building, New York	195.76	665.6	14460	8.60	11340	7.61
Column (a), Ivins Building, New York	228.76	777.8	26010	10.66	10890	6.90
Wanamaker Building, New York	352.14	1197.3	35440	10.03	18780	7.30
Adams Building, Chicago . Columns having Three Web Plates.	174.00	591.6	8220	6.87	3670	4.60
Farmers' Bank Building, Pittsburg	233.42	793.6	9400	6.33	9950	6.53
Column I Waldorf-Astoria Hotel, New York	180.10	612.3	8900	7.03	5320	5.43
Column (b) Ivins Building, New York . . Miscellaneous Types.	188.74	641.7	21940	10.78	10270	7.38
Column 280 Waldorf-Astoria Hotel, New York	381.17	1296.0	63380	12.89	35930	9.71
Column (a) Illinois Steel Co., Chicago	114.58	389.6	24070	14.50	8360	8.54
Column (b) Illinois Steel Co., Chicago	202.91	689.9	87040	20.71	18190	9.47

TABLE 29

PROPERTIES OF TOP CHORDS OF BRIDGES

sections of which are shown on pages 6r to 66

SECTIONS OF COLUMNS

FIRST NATIONAL BANK BUILDING, CHICAGO
4 s $-8^{\prime \prime} \times 8^{\prime \prime} \times \frac{15^{\prime \prime}}{6^{\prime \prime}}$
1 Pl. $-17^{\prime \prime} \times \frac{77^{\prime \prime}}{}$
6 Pls. $-18^{\prime \prime} \times \frac{133^{\prime \prime}}{6}$

FRICK BUILDING, PITTSBURG
4ls $-8^{\prime \prime} \times 8^{\prime \prime} \times \frac{1}{1} \frac{5^{\prime \prime}}{6}$
6 Pls. $-18^{\prime \prime} \times \frac{1}{1} 5^{\prime \prime}$
I Pl. $-17^{\prime \prime} \times \frac{7^{\prime \prime}}{8}$

COLUMN 43, C. \& N. W. R'Y OFFICE BUILDING, CHICAGO

> 6 Pls. $-16^{\prime \prime} \times \frac{5^{\prime \prime}}{8}$
> 2 Pls. $-16^{\prime \prime} \times \frac{11^{\prime \prime}}{6^{\prime \prime}}$
> 2 Pls. $-12 \frac{121^{\prime \prime}}{} \times \frac{3^{\prime \prime}}{}$
> $4 \mathrm{ls}-6^{\prime \prime} \times 6^{\prime \prime} \times 3^{\prime \prime}$

COLUMN 24, C. \& N. W. R'Y OFFICE BUILDING, CHICAGO

6 Pls. $-18^{\prime \prime} \times \frac{55^{\prime \prime}}{8}$
4 Pls. $-18^{\prime \prime} \times \frac{11^{\prime \prime}}{16}$
2 Pls. $-12 \frac{1_{2}^{\prime \prime}}{} \times \frac{3^{\prime \prime}}{4^{\prime \prime}}$
4 您 $-8^{\prime \prime} \times 6^{\prime \prime} \times 3^{\prime \prime}$
(56)

SECTIONS OF COLUMNS

LAND TITLE BUILDING, PHILADELPHIA

$$
\begin{aligned}
& 4 \mathrm{ls}-8^{\prime \prime} \times 8^{\prime \prime} \times \frac{1}{1} \frac{16^{\prime \prime}}{} \\
& 2 \text { Pls. }-17^{\prime \prime} \times \frac{33^{\prime \prime}}{} \\
& 8 \text { Pls. }-18^{\prime \prime} \times \frac{13 b^{\prime \prime}}{16^{\prime \prime}}
\end{aligned}
$$

ROCK ISLAND RAILWAY STATION, CHICAGO

$$
\begin{aligned}
& 4 \text { ls }-5^{\prime \prime} \times 3^{\frac{1^{\prime \prime}}{2}} \times \frac{3^{\prime \prime}}{3^{\prime \prime}} \\
& 2 \text { Pls. }-12^{\prime \prime} \times \frac{1_{2}^{\prime \prime}}{} \\
& 2 \text { Pls. }-15^{\prime \prime} \times \frac{3^{\prime \prime}}{3^{\prime \prime}}
\end{aligned}
$$

PARK ROW BUILDING, NEW YORK

$$
\begin{aligned}
& 6 \text { Pls. }-24^{\prime \prime} \times 3^{\prime \prime} \\
& 4 \text { Ls }-6^{\prime \prime} \times 4^{\prime \prime} \times 3^{\prime \prime} \\
& 2 \text { Pls. }-16^{\prime \prime} \times 3^{\prime \prime \prime} \\
& 2 \text { Pls. }-6^{\prime \prime} \times 3^{\prime \prime} \\
& 2 \text { Pls. }-18^{\prime \prime} \times 3^{\prime \prime}
\end{aligned}
$$

COLUMN (a), IVINS BUILDING, NEW YORK
$4^{\text {ls }}-6^{\prime \prime} \times 6^{\prime \prime} \times \frac{3}{4}^{\prime \prime}$
2 Web Pls. $-24^{\prime \prime} \times \frac{3^{\prime \prime}}{3^{\prime \prime}}$
2 Side Pls. $-22^{\prime \prime} \times \frac{3^{\prime \prime}}{3^{\prime \prime}}$
2 Side Pls. $-12^{\prime \prime} \times \frac{3^{\prime \prime}}{3^{\prime \prime}}$
6 Cover Pls. $-24^{\prime \prime} \times \frac{3^{\prime \prime}}{}$

WANAMAKER BUILDING, NEW YORK

$$
\begin{aligned}
& \text { 4.s }-6^{\prime \prime} \times 6^{\prime \prime} \times \frac{7^{\prime \prime}}{8 \prime} \\
& 6 \text { Pls. }-28^{\prime \prime} \times \frac{15}{1} 6^{\prime \prime} \\
& 6 \text { Pls, }-22^{\prime \prime} \times \frac{15^{\prime \prime}}{16^{\prime}} \\
& 2 \text { Pls. }-10^{\prime \prime} \times \frac{7^{\prime \prime}}{8} \\
& 2 \text { Pls. }-84_{4}^{\prime \prime} \times \frac{7}{8}{ }^{\prime \prime}
\end{aligned}
$$

ADAMS BUILDING, CHICAGO

$3-13^{\prime \prime}[550 \neq 1$
6 Pls. $-18^{\prime \prime} \times 1^{\prime \prime}$
2 Pls. $-12 \frac{1^{\prime \prime}}{} \times \frac{7^{\prime \prime}}{8}$

FARMERS' BANK BUILDING, PITTSBURG
6 Pls. $-13^{\prime \prime} \times \frac{3^{\prime \prime}}{}$ $8 \underline{\text { s }}-6^{\prime \prime} \times 4^{\prime \prime} \times \frac{7^{\prime \prime}}{8 \prime}$ 2 Pls. $-24^{\prime \prime} \times \frac{13}{13} 6^{\prime \prime}$ 4 Pls. $-24^{\prime \prime} \times \frac{3^{\prime \prime}}{\prime^{\prime \prime}}$

COLUMN 1, WALDORF-ASTORIA HOTEL, NEW YORK

4-15" [s 55 \#
2 Pls. -14$\}^{\prime \prime} \times{ }^{\prime} \frac{7}{8 \prime \prime}$
6 Pls. $-20^{\prime \prime} \times \frac{3^{\prime \prime}}{n^{\prime \prime}}$

SECTIONS OF COLUMNS

COLUMN (b), IVINS BUILDING,
NEW YORK
3 Web Pls. $-24^{\prime \prime} \times \frac{11215}{1 \prime}$
4 Cover Pls. $-28^{\prime \prime} \times \frac{11}{1} \mathbf{1}^{\prime \prime}$ 8 Ls $-6^{\prime \prime} \times 6^{\prime \prime} \times \frac{11}{1} \mathbf{b}^{\prime \prime}$

COLUMN 280,WALDORF-ASTORIA HOTEL, NEW YORK

$$
\begin{aligned}
& \text { 1о Pls. }-32 \frac{1}{2}^{\prime \prime} \times \frac{5_{8}^{\prime \prime}}{} \\
& 4 \text { Pls. }-36^{\prime \prime} \times \frac{3^{\prime \prime}}{} \\
& 4^{\text {ls }}-6^{\prime \prime} \times 4^{\prime \prime} \times \frac{1}{1} \frac{1}{1_{5}^{\prime \prime}} \\
& 8 \text { sㅗ }-6^{\prime \prime} \times 3 \frac{3}{2}^{\frac{1}{2}} \times \frac{5}{8}
\end{aligned}
$$

COLUMN (a), ILLINOIS STEEL
COMPANY, CHICAGO

SECTIONS OF COLUMNS

COLUMN (b), ILLINOIS STEEL CO., CHICAGO
(60)

SECTIONS OF BRIDGE CHORDS

300-FOOT SPAN, BOONE VIADUCT, BOONE, IOWA

$$
\begin{aligned}
& 4 \mathrm{ls}-6^{\prime \prime} \times 4^{\prime \prime} \times \frac{3}{4 \prime \prime} \\
& 4 \mathrm{ls}-6^{\prime \prime} \times 4^{\prime \prime} \times \frac{9}{16^{\prime \prime}} \\
& 2 \text { Pls. }-30^{\prime \prime} \times \frac{3^{\prime \prime}}{\prime^{\prime \prime}} \\
& 2 \text { Pls. }-18^{\prime \prime} \times \frac{3^{\prime \prime}}{4}
\end{aligned}
$$

PANTHER HOLLOW STEEL ARCH, PITTSBURG

INTERNATIONAL BRIDGE, BUFFALO

$$
\begin{aligned}
& 4 \mathrm{l}_{\mathrm{s}}-6^{\prime \prime} \times 6^{\prime \prime} \times \frac{7^{\prime \prime}}{\prime^{\prime \prime}} \\
& 2 \text { Pls. }-40^{\prime \prime} \times \frac{7^{\prime \prime}}{8} \\
& 2 \text { Pls. }-27 \frac{11^{\prime \prime \prime} \times \frac{7}{8 \prime \prime}}{16} \\
& 2 \text { Pls. }-38^{\prime \prime} \times \frac{7}{16}
\end{aligned}
$$

NIAGARA CANTILEVER BRIDGE, NIAGARA FALLS

SECTIONS OF BRIDGE CHORDS

NEW OMAHA BRIDGE,
OMAHA, NEB.

$$
\begin{aligned}
& \text { 4ls }-4^{\prime \prime} \times 4^{\prime \prime} \times 3^{\prime \prime} \\
& \text { I Pl. }-28^{\prime \prime} \times \frac{1}{2}^{\prime \prime} \\
& 2 \text { Pls. }-18^{\prime \prime} \times 3^{\prime \prime} \\
& 2 \text { Pls. }-10^{\prime \prime} \times 3^{\prime \prime} \\
& 2 \text { Pls. }-5^{\prime \prime} \times 3^{\prime \prime}
\end{aligned}
$$

CAIRO BRIDGE,
CAIRO, KENTUCKY

INTERNATIONAL BRIDGE, BUFFALO

SIXTH STREET BRIDGE, PITTSBURG
(64)

SECTIONS OF BRIDGE CHORDS

SECTIONS OF BRIDGE CHORDS

ROOF TRUSS, WALDORF-ASTORIA HOTEL, NEW YORK
$12 \underline{\mathrm{~s}}-6^{\prime \prime} \times 4^{\prime \prime} \times \frac{1^{\prime \prime}}{\prime \prime}$
10 Pls. $-29^{\frac{1}{2}} \times \frac{3^{\prime \prime}}{4^{\prime \prime}}$
2 Pls. $-36^{\prime \prime} \times \frac{1}{2}^{\prime \prime}$

EADS BRIDGE, ST. LOUIS

UNIT STRAINS

The following data on unit strains, pages $67,68,69,70,71$, and 73 , is taken from Bulletin No. 4 I of the American Railway Engineering and Maintenance of Way Association, published in 1903.

STRAINS UNDER DYNAMIC LOADS

The subject of unit strains in iron and steel structures is, as said before, so closely related to the quality and strength of material used, and the loading which the structure has to carry, that the three must be studied together.

The quality and strength of material to be used in the structure is well known from the numerous tests made on both specimens and full-sized structural members in the last fifty years, during which period iron and steel have been used for structures of various kinds.

The load which the structure may have to carry during its service is, on the contrary, more or less an assumption at the time the structure is designed.

If this is a railroad bridge, we assume that it shall carry a load represented by a typical train. The static load applied on the bridge from this typical train may closely represent the static load of the heaviest actual train passing over the bridge when in service, but we are still in doubt how much this static load should be increased to closely represent the dynamic load from the moving train.

It is on the question how to provide for this dynamic load of the moving train that the engineers who design bridges differ, and there is a wide field for the investigator to determine by experiments and observation what the relations are between the static train load and the load produced by the moving train for various lengths of spans and for the various members of the bridge. Such investigation, if carefully made and of sufficient extent, would be of great value to both the designers and the purchasers of bridges. The Committee is now making some investigations in this direction in connection with the subject of impact.

Two distinct methods are used to provide for the excess of the dynamic load above the assumed static load. The first method, which we may say has been used ever since bridge designing became a science, and which is still adhered to by many engineers, is to vary the unit strains in the different members of the structure according to some rule. Some engineers vary the unit strains according to the relation between
live and dead load, or total load and dead load; some use different fixed unit strain for the different members of the structure; and some use different unit strains for live load and for dead load.

The second method, which has lately found favor with and has been adopted by many of the American engineers, is to use a constant unit strain for the same grade of material and provide for the dynamic effect of the load by increasing the static liveload strains according to impact formulas.

This last method seems to be the most rational, as it treats the dynamic increment of the load as a load, and not as a decreased strength of material.

It has been thoroughly demonstrated, by experiments, that when a piece of iron or steel is strained above its elastic limit, but below its ultimate strength, it will finally break if the strain is repeated a sufficient number of times, and that the nearer this strain is kept to the elastic limit, the larger is the number of repetitions of the strain that are required to break the piece, and that when this repeated strain is close above the elastic limit, the number of repetitions required to break the piece rapidly approaches infinity. It is therefore reasonable to assume that a piece strained below the elastic limit will stand any number of repetitions of the strain without being injured or reduced in strength.

If, therefore, all the possible strains with their dynamic increment to which the various members of the structure will probably be subjected are found, and if such perfect workmanship is possible that each piece in a member is strained equally per unit with every other piece in the same member, and the material is free from defects, then it would be safe to use a unit strain equal to that required to strain the member up to the elastic limit. The material may have defects not discovered by the inspection and the workmanship is not perfect. The pieces forming the member will, therefore, not be equally strained in the finished structure. Some pieces may have to be stretched considerably before other pieces take any of the strain.

How much additional section should be allowed for these defects in material and workmanship depends on the care taken in the manufacturing at mills and shops, and on the thoroughness of inspection. If the section is increased seventy-five per cent., it seems reasonable to assume that these defects have been provided for very liberally. This would give an allowable unit strain equal to four-sevenths of the elastic limit.

UNIT STRAINS IN COMPRESSION MEMBERS

There is much diversity of opinion in regard to unit strains for compression members. Numerous tests have been made, the results plotted on diagrams, and formulas

UNIT STRAINS

devised to agree as closely as possible with the average of the results of tests. Most of these formulas, when reduced to the same base unit, follow each other closely within the limits for length of member divided by least radius of gyration of cross-section of member that are used in good designing.

The attached diagram (page 73) gives the allowed unit strains, derived from some well-known formulas for the various relations of " 1 over r," reduced to a base unit strain of 16,000 pounds per square inch.

The straight-line formula, first proposed by Thomas H. Johnson, and used, among others, by Theodore Cooper in his specifications, is very simple, and gives values that are no doubt as close to the actual conditions as any of the other more complicated formulas, within the limits for the relation "l over r " used in good designing.

This formula discourages inexperienced designers from using long and flimsy compression members, which they are very apt to do when they use a formula which will allow comparatively high unit strains for high values of the relation " 1 over r."

The earlier formulas always made a distinction between members with pin end connections and members with riveted end connections, but the later formulas make no such distinction.

A member with pin end connections is not as rigid as a member with riveted end connections; but, on the contrary, pin connections do not transmit the secondary bending strains, caused by the deflection of the structure, to their member as much as riveted connections. It seems, therefore, as if the advantage of stiffness in a member with riveted end connections is, at least to some extent, counterbalanced by the disadvantage of transmitted bending strains, and that there is practically no difference in strength between the two members, if of same section but with the above difference in end connection.

Our knowledge is still limited in regard to the effects of alternating and combined strains. As the members subject to these strains are very few in an ordinary structure, we can afford to be liberal with material in proportioning them.

The large number of bridges are of so short spans that the lateral and sway bracing should be proportioned to resist the effect of the swinging and swaying of the trains rather than the effect of the wind pressure. The term "wind bracing" is misleading, except for long spans. There is no reason why the unit strains allowed on these parts of the structure should be different from those previously given.

From Bulletin No. 41 of the American Railway Engineering and Maintenance of Way Association

A - Gordon's Formula. Square bearing.

B-Gordon's Formula.
Pin and square bearing.

C-Gordon's Formula. Pin bearing.

D - American Bridge Co.
Standard specifications railway bridges.

$$
P_{1}=\frac{15000}{1+\frac{1^{2}}{13500 r^{2}}}
$$

E-Boston \& Maine R. R.
Standard specifications riveted members.

$$
1=\frac{a}{10000} \times \frac{8700}{1+\frac{r^{2}}{28000 r^{2}}}
$$

F-Boston \& Maine R. R.
Standard specifications pin members.

G-J. B. Johnson's Formula. Riveted ends.

$$
P_{1}=\frac{a}{10000} \times \frac{8700}{1+\frac{l^{2}}{14000 \mathrm{r}^{2}}}
$$

$$
P_{1}=\frac{1}{2}\left(\frac{f}{2+\frac{f-P_{1}}{25 \mathrm{E}}\left(\frac{1}{r}\right)^{2}}\right)
$$

$\mathrm{H}-\mathrm{J}$. B. Johnson's Formula. Pin ends.

$$
P_{1}=\frac{1}{2}\left(\frac{f}{2+\frac{f-P_{1}}{16 E}\left(\frac{1}{r}\right)^{2}}\right)
$$

SUMMARY OF COMPRESSION FORMUL用 (Continued)

From Bulletin No. 4^{I} of the American Railway Engineering and Maintenance of Way Association

I - Max von Leber's Formula.
In Bulletin of European Railway Congress.

$$
P_{1}=\frac{P}{I+0.01 \frac{1}{r}}
$$

J - Cooper's Formula.
Chord segments. Live load strains.
$P_{1}=10000-45 \frac{1}{r}$

K-Cooper's Formula.
Posts of through bridges. Live load strains.
$P_{1}=8500-45 \frac{1}{r}$

L - Cooper's Formula.
Posts of deck bridges. Live load strains.

$$
P_{1}=9000-40 \frac{1}{r}
$$

M - Formula recommended by the Committee on Iron and Steel Structures.
$\mathrm{P}=$ Base unit strains in lbs. per square inch.
$P_{1}=$ Allowable unit strains in lbs. per square inch.
$1=$ Unsupported length in inches.
$r=$ Least radius of gyration in inches.
$\mathrm{E}=$ Modulus of elasticity $=29,000,000$.
$\mathrm{f}=$ Elastic limit $=28,000$.
$\mathrm{a}^{\cdot}=$ Values given in table in Boston \& Maine R. R. specifications for metal bridges, 1896.
$\mathrm{s}=$ Factor of safety.
TABLE 30

シ	Bion oir			
н			\&	
$: 4$				
\cdots				
－			\& 응 웃응	
出	oio			
\bigcirc	oo o o o o o o o			
出	O. ợ		엉 억 웅 웅 웅	
（1）			\&	옷옷웅 웅웅 웅
A				
0	oio 응운 운			읏응 움읏웅 웅
∞				
4				
－14	－앵ㅅ아ㅇㅏㅏ			

CURVES DERIVED FROM FORMUL® ON PAGES 70 AND 71

REDUCED TO $\mathbf{1 6 , 0 0 0}$ BASE UNIT

From Bulletin No. 41 of the American Railway Engineering and Maintenance of Way Association

(73)
TABLE 31
VALUES CORRESPONDING TO FORMULA ON PAGES 70 AND 71 AND TO CURVES ON SHEET NO． 3

z				
\cdots				\％
\triangle	앙 웅 앙 웃옹			
\cdots	웅 웅응 웅 잉	읏윴웅 웅 앙	웅웅ㅇㅇㅇ웅웅	
ェ			웅 운 웁 윽	
0	옹응 응 응 웅	상 웅 응 융 웅	oo o o p io io	
动		$\begin{aligned} & \text { 웅ㅇㅇㅇㅇㅇㅇㅇㅇ 응 } \\ & \text { 웅 } \end{aligned}$	읏웃웅으운	
［2）			oî 응 ơ o o o	
A				$\stackrel{\circ}{\circ}$
0				
∞				
4				
-ix	－		우웁웁었염	

RAILROAD BRIDGE SPECIFICATIONS

Name.	$\begin{aligned} & \dot{\sim} \\ & \stackrel{\dot{\sim}}{\dot{\sim}} \end{aligned}$	Grade of Sterl.	迷	Safe Tension.	Safe Compression.	
American Bridge Co.	1900	$\left\|\begin{array}{l} 52000-62000 \\ 60000-70000 \end{array}\right\|$	$\frac{1}{2}$ Ult.	$\begin{aligned} & 15000 \\ & 17000 \end{aligned}$	$\begin{cases}\frac{15000}{1+\frac{l^{2}}{13500 r^{2}}} & \frac{17000}{1+\frac{l^{2}}{11000 r^{2}}}\end{cases}$	$D+\frac{3}{4} B$
Theodore Cooper	1901	$\left\lvert\, \begin{aligned} & 54000-62000 \\ & 60000-67000 \end{aligned}\right.$	$\frac{1}{2}$ Ult.	Variable	Straight line-Variable	$D+B$
The Osborn Eng. Co.	1903	$\begin{aligned} & 52000-62000 \\ & 60000-70000 \end{aligned}$	$\begin{aligned} & 32000 \\ & 35000 \end{aligned}$	$\begin{aligned} & 15000 \\ & 17000 \end{aligned}$	$\begin{cases}\frac{15000}{1+\frac{l^{2}}{36000 r^{2}}} & \frac{17000}{1+\frac{l^{2}}{36000 r^{2}}}\end{cases}$	\ldots
*A.R.E. \& M. of W.A.	1903	55000-65000	28000	16000	$16000-70 \frac{l}{r}$	- . .
Pennsylvania R.R.	1901	52000-62000	28000	15000	$\left\{\frac{15000}{1+\frac{l^{2}}{13500 r^{2}}}\right.$	$D+\frac{3}{4} B$
N.Y.C. \& H.R. R.R.	1902	56000-64000	33000	$\begin{aligned} & \text { L.L. - } 8000 \\ & \text { D.L. - } 16000 \end{aligned}$	$\begin{cases}\frac{8000}{1+\frac{l^{2}}{18000 r^{2}}} & \frac{16000}{1+\frac{l^{2}}{180} \overline{1} 0 r^{2}}\end{cases}$	$D+B$
Missouri Pacific	1902	$\left\lvert\, \begin{aligned} & 52000-62000 \\ & 60000-70000 \end{aligned}\right.$	$\frac{1}{2}$ Ult.	15000	$17000-80 \frac{l}{r}$. . .

$D=$ direct stress in pounds per square inch.
$B=$ extreme fiber stress in pounds per square inch.
L.L. = live load.
D.L. = dead load.

* Amcrican Railway Engineering and Maintenance of Way Associa*ina

HIGHWAY BRIDGE SPECIFICATIONS

Name．－	$\underset{\text { ex }}{\substack{\dot{x}}}$	$\underset{\text { Grade of }}{\text { Sterl }}$	或运	Safe Tension．	Sape Compression．	
American Bridge Co．	1901	$\left\|\begin{array}{l} 52000-62000 \\ 60000-70000 \end{array}\right\|$	$\frac{1}{2}$ Ult．	$\begin{aligned} & 15000 \\ & 17000 \end{aligned}$	$\left\{\begin{array}{cc}\frac{15000}{1+\frac{l^{2}}{13500 r^{2}}} & \left.\frac{17000}{I+\frac{l^{2}}{11000 r^{2}}}\right\}\end{array}\right.$	$D+\frac{3}{4} B$
Thendore Cooper	1901	$\left\lvert\, \begin{aligned} & 54000-62000 \\ & 60000-68000 \end{aligned}\right.$	$\frac{1}{2}$ Ult．	Variable	Straight line－Variable	$D+B$
The Osborn Eng．Co．	1901	$\left\lvert\, \begin{aligned} & 52000-62000 \\ & 60000-70000 \end{aligned}\right.$	$\begin{aligned} & 32000 \\ & 35000 \end{aligned}$	$\begin{aligned} & 20000 \\ & 22000 \end{aligned}$	$\begin{cases}\frac{20000}{1+\frac{l^{2}}{36000 r^{2}}} & \frac{22000}{1+\frac{l^{2}}{36000 r^{2}}}\end{cases}$	$D+B$

BUILDING SPECIFICATIONS

Name．	$$	Grade of Steel．	氙号寫	SAfB Tension．	Sape Compression．	
Charles Evan Fowler	1901	55000－65000	$\frac{1}{2}$ Ult．	15000	12500－41．7 $\frac{l}{r}$	－••
C．C．Schneider	1904	55000－65000	28000	16000	16000－70 $\frac{l}{r}$	$D+\frac{3}{4} B$
New York Bldg．Law	1899	54000－64000	32000	16000	15200－58 $\frac{l}{r}$	－
Chicago Bldg．Law	1903	－••	－•	15000	15000 reduced	－••

$D=$ direct stress in pounds per square inch．
$B=$ extreme fiber stress in pounds per square inch．
$L . L .=$ live load．
D．L．$=$ dead load．

Short legs outstanding
Safe Loads are based on the New York Building Law Formula, $P=15200-58 \frac{l}{r}$
For sections to the left of the heavy line $\frac{l}{r}$ is less rizan 120

$\underset{\mathbf{r}}{\text { Least. }}$	Total Arba.	$\underset{\text { of } \begin{array}{c} \text { Size } \\ \text { Anges. } \end{array},}{ }$	b. то b. of Angles.	Unbrackd Span in Febt.						
				4	5	6	7	8	9	10
I. 49	14.62	$7 \times 3 \frac{1}{2} \times \frac{3}{4}$	$\frac{5}{8}$	194.9	188.1	181.2	174.4	167.6	160.8	153.9
1.48	13.50	$\times \frac{11}{16}$	$\frac{5}{8}$	179.8	173.5	167.1	160.8	154.4	148.1	141.7
I. 46	12.34	$\times \frac{5}{8}$	$\frac{5}{8}$	164.0	158.2	152.3	146.4	140.5	I 34.6	128.7
I. 40	11.18	$\times \frac{9}{16}$	$\frac{1}{2}$	147.7	142.I	136.6	131.0	125.5	119.9	114.3
I. 39	10.00	$\times \frac{1}{2}$	$\frac{1}{2}$	132.0	127.0	122.0	II6.9	111.9	106.9	101. 9
I. 35	8.80	$\times \frac{7}{16}$	$\frac{7}{16}$	115.6	III.I	106.5	102.0	97.5	92.9	88.4
1.79	13.88	$6 \times 4 \times \frac{3}{4}$	$\frac{5}{8}$	189.4	184.0	178.6	173.2	167.8	162.4	157.0
1.77	12.82	$\times \frac{11}{16}$	$\frac{5}{8}$	174.7	169.7	164.6	I59.6	154.5	149.5	144.5
1.76	II. 72	$\times \frac{5}{8}$	$\frac{5}{8}$	I59.6	I55.0	150.3	145.7	141.1	${ }_{13} 6.4$	I31.8
1.70	10.62	$\times \frac{9}{16}$	$\frac{1}{2}$	144.0	1 39.7	${ }^{1} 35.3$	131.0	I 26.6	122.3	118.0
1.69	9.50	$\times \frac{1}{2}$	$\frac{1}{2}$	128.8	124.8	120.9	117.0	II3.1	109.2	105.3
1. 65	8.36	$\times \frac{7}{16}$	$\frac{7}{16}$	II3.0	109.5	105.9	102.4	98.9	$95 \cdot 3$	91.8
1.62	7.22	$\times \frac{3}{8}$	$\frac{3}{8}$	$97 \cdot 3$	94.2	91.1	88.0	84.9	8r. 8	78.7
r. 56	9.84	$5 \times 3 \frac{1}{2} \times \frac{5}{8}$		132.0	127.6	123.2	[188.8	114.4	110.1	105.7
I. 55	8.94	$\times \frac{9}{16}$	$\frac{1}{2}$	119.8	115.8	III. 8	107.8	103.8	99.8	95.8
I. 54	8.00	$\times \frac{1}{2}$	$\frac{1}{2}$	107.1	103.5	99.9	96.3	92.7	89.1	85.4
1.50	7.06	$\times \frac{7}{16}$	$\frac{7}{16}$	94.2	90.9	87.6	84.4	81.1	77.8	- 74.5
I. 46	6.10	$\times \frac{3}{8}$	3	81.1	78.2	$75 \cdot 3$	72.4	69.5	66.6	63.6
I. 43	5.12	$\times \frac{5}{16}$	$\frac{5}{16}$	67.9	65.4	62.9	60.4	57.9	55.4	52.9
J. 24	7.24	$4 \times 3 \times \frac{9}{16}$	$\frac{9}{16}$	93.8	89.7	85.7	8ı. 6	77.5	73.5	69.4
I. 25	6.50	$\times \frac{1}{2}$	$\frac{1}{2}$	84.3	80.7	77.1	73.5	69.8	66.2	62.6
1.25	$5 \cdot 74$	$\times \frac{7}{16}$	$\frac{7}{16}$	74.5	71.3	68.1	64.9	61.7	58.5	55.3
1.26	4.96	$\times \frac{3}{8}$	$\frac{3}{8}$	64.4	61.7	59.0	56.2	53.5	50.7	48.0
1. 27	4.18	$\times \frac{5}{16}$	$\frac{5}{16}$	54.4	52.1	49.8	47.5	45.2	42.9	40.6
.91	5.00	$3 \times 2 \frac{1}{2} \times \frac{1}{2}$	$\frac{1}{2}$	60.7	. 9	53.1	49.2	$45 \cdot 4$	41.6	37.8
. 92	4.44	$\times \frac{7}{16}$	$\frac{7}{16}$	54.1	50.7	$47 \cdot 3$	44.0	40.6	37.3	33.9
. 93	3.84	$\times \frac{3}{8}$	$\frac{3}{8}$	46.9	44.0	41.1	38.3	$35 \cdot 4$	32.5	29.6
. 94	3.24	$\times \frac{5}{16}$	$\frac{5}{16}$	39.7	$37 \cdot 3$	34.9	32.5	30.1	27.7	25.3
. 95	2.62	$\times \frac{1}{4}$	$\frac{5}{16}$	32.1	30.2	28.3	26.4	24.5	22.5	20.6
. 77	3.10	$2 \frac{1}{2} \times 2 \times \frac{3}{8}$	8	$35 \cdot 9$	33. 1	30.3	27.5	24.7	21.9	19.1
.78	2.62	$\times \frac{5}{16}$	$\frac{5}{16}$	30.5	28.1	25.8	23.5	21.1	18.8	16.5
. 78	2.12	$\times \frac{1}{4}$	$\frac{5}{16}$	24.7	22.8	20.9	19.0	17.1	15.2	I 3.3
. 79	1.62	$\times \frac{3}{16}$	$\frac{1}{4}$,	18.9	17.5	16.1	14.6	13.2	11.8	10.4

AS COLUMNS OR STRUTS

Short legs outstanding
Safe Loads are based on the New York Building Law Formula, $P=15200-58 \frac{l}{r}$ Safe Loads given are total safe loads in thousand pounds
For sections to the left of the heavy line $\frac{l}{r}$ is less than 120

Unbraced Span in Feet.										
II	12	14	16	18	20	22	24	26	28	30
147.1	140.3	I 26.6	113.0	99.3	85.6	72.0	58.3	$44 \cdot 7$		
135.4	129.0	116.3	103.6	90.9	78.2	65.5	52.8	40.1		
122.9	117.0	105.2	93.4	81.7	69.9	58.1	46.4	34.6		
108.8	103.2	92.1	8 I .0	69.9	58.8	47.7	36.5	$25 \cdot 4$		
96.9	91.9	8r. 9	71.9	61.9	51.9	41.8	31.8	21.8		
83.9	79.3	70.2	61.2	52.1	43.0	34.0	24.9	${ }^{1} 5.8$		
151.6	146.2	135.4	124.6	113.8	103.0	92.2	81.4	70.7	59.9	49.1
139.4	I 34.4	124.3	114.2	104.1	94.0	84.0	73.9	63.8	53.7	43.6
127.2	122.5	113.3	104.0	94.7	85.4	76.2	66.9	57.6	48.4	39.1
113.6	109.3	100.6	91.9	83.2	74.5	65.9	57.2	48.5	39.8	31.1
101.4	97.4	89.6	8ı. 8	74.0	66.1	58.3	50.5	42.7	34.8	27.0
88.3	84.8	77.7	70.7	63.6	56.5	49.5	42.4	$35 \cdot 4$	28.3	21.3
75.6	72.5	66.3	60.1	53.9	47.6	41.4	35.2	29.0	22.8	16.6
101.3	96.9	88.1	$79 \cdot 3$	70.5	6r. 8	53.0	44.2	$35 \cdot 4$		
91.7	87.7	79.7	71.7	63.6	55.6	47.6	39.6	31.5		
8ı.8	78.2	71.0	63.8	56.5	$49 \cdot 3$	42.1	34.8	27.6		
71.3	68.0	61.4	54.9	48.3	41.8	35.2	28.7	22.1		
60.7	57.8	52.0	46.2	40.4	34.6	28.7	22.9	17.1		
50.4	47.9	42.9	38.0	33.0	28.0	23.0	18.0	13.0		
65.4	61.3	53.2	45.0	36.9	28.8					
59.0	55.4	48.1	40.9	33.7	26.4					
52.1	48.9	42.5	36.1	29.7	23.3					
$45 \cdot 3$	42.5	37.0	31.6	26.1	20.6					
38.3	36.1	3 r .5	26.9	22.3	17.7					
33.9	30.1	22.5								
30.6	27.2	20.5								
26.8	23.9	18.1								
22.9	20.5	15.7								
18.7	16.8	12.9								

(80)
TABLE 34
12-INCH PLATES

(8I)
TABLE 35
18-INCH PLATES
$18 \frac{\mathrm{~b}}{} \mathrm{~b}$ to b . of angles, long legs outstanding
Safe loads are based on New York Building Law Formula
Safe loads given are total safe loads in thousand pounds
For sections to the left of the heavy line, $\frac{l}{r}$ is less than $\mathbf{1 2 0}$

$\begin{aligned} & \dot{H} \\ & \text { 曽 } \end{aligned}$	$\stackrel{\sim}{0}$		
	N		
	N		
	앙		
	$\underset{\sim}{\infty}$		
	\bigcirc		
	\#		
	$\stackrel{N}{N}$		
	인		
$\begin{aligned} & \dot{4} \\ & \dot{4} \\ & \frac{n}{x} \\ & \dot{4} \end{aligned}$	\pm		
	\square		
$\begin{aligned} & \dot{\sim} \\ & \dot{\sim} \\ & \text { n } \\ & \dot{x} \end{aligned}$	\pm	$\stackrel{\circ}{\sim} \cdot \cdot \cdot \cdot \cdot \stackrel{m}{+}$	$\stackrel{\infty}{\sim} \cdot \cdots \cdot \cdot \cdot \stackrel{\sim}{\sim}$
	\square		웃ํo No m す ∞ O
-	¢ ${ }_{\text {do }}$		amo me mer Mey mo dex

(82)
TABLE 36
SAFE LOADS OF ANGLE AND PLATE COLUMNS. 24-INCH PLATES.

-Laga ni nvas axovagn	$\stackrel{\sim}{*}$		
	+		
	웅		$\underset{\sim}{n} \underset{\sim}{\infty} \underset{\sim}{\infty} \underset{\sim}{\infty} \underset{\sim}{\infty} \underset{\sim}{\infty} \underset{\sim}{\infty} \underset{\sim}{0} \underset{\sim}{0} \underset{\sim}{n}$
	$\underset{\sim}{\infty}$		
	$\underset{\sim}{0}$		
	\pm		
	$\stackrel{N}{\mathbf{N}}$		
	인		
$\begin{aligned} & \dot{<} \\ & \dot{K} \\ & \frac{n}{x} \\ & \dot{x} \end{aligned}$	2		
	\rightarrow		
	\pm		
	\cdots		
$\begin{array}{\|l\|} \hline \text {-GLVTd }{ }^{\text {BO }} \\ \text { SSGNYDIHL } \end{array}$			
		Tr te	No

(83)

TABLE 37

SAFE LOADS FOR

Safe loads are based on New York Building Law Formula Safe loads given are total safe loads in thousand pounds
For sections to the left of the heavy line, $\frac{l}{r}$ is less than 120 $d=$ Distance back to back in inches to make r equal about both axes

Size of Channel.		Total Area.	rabout Axis BB.	d.	Unbraced Span in Feet.			
	$\begin{aligned} & \stackrel{\dot{5}}{0} \\ & \dot{0} \\ & \stackrel{0}{0} \end{aligned}$				8	10	12	14
15	55	32.36	5.16	8.53	457.0	448.2	439.5	430.8
6	50	29.42	5.23	8.71	415.9	408.0	400.2	392.4
"	45	26.48	$5 \cdot 32$	8.92	374.8	367.8	360.9	354.0
"	40	23.52	$5 \cdot 43$	9.15	333.4	327.4	321.3	315.3
"	35	20.58	$5 \cdot 58$	9.43	292.3	287.1	282.0	276.8
"	33	19.80	5.62	9.50	28 I .3	276.4	271.5	266.6
12	40	23.52	4.09	6.60	325.5	317.5	309.5	301.5
"	35	20.58	4.17	6.81	285.3	278.5	271.6	264.7
"	30	17.64	4.28	7.07	245.2	239.4	233.7	228.0
"	25	14.70	4.43	$7 \cdot 36$	205.0	200.3	195.7	191.1
"	20.50	12.06	4.61	7.67	168.7	165.1	161.5	157.8
10	25	14.70	3.52	5.67	200.2	194.4	188.6	182.7
"	20	11.76	3.66	5.97	160.9	156.4	${ }^{151.9}$	147.4
"	15	8.92	3.87	6.33	122.7	I 19.5	116.3	113.1
9	20	11.76	3.2 I	5.12	158.3	153.2	148.2	143.1
"	15	8.82	3.40	5.49	I 19.6	I 16.0	112.4	108.8
،	13.25	7.78	$3 \cdot 49$	5.63	105.8	102.7	99.6	96.5
8	${ }_{16.25}$	9.56	2.89	$4 \cdot 54$	126.9	122.3	117.7	II3.I
"	13.75	8.08	2.98	4.72	107.7	103.9	100.2	96.4
"	11.25	6.70	3.11	4.94	89.8	86.8	83.8	80.8
7	14.75	8.68	2.50	3.80	112.6	107.8	102.9	98.1
"	12.25	7.20	2.59	3.99	94.0	90.1	86.2	82.4
"	9.75	5.70	2.72	4.22	75.0	72.1	69.1	66.2
6	13	7.64	2.13	3.09	96.2	91.2	86.2	8 I .2
"	10.50	6.18	2.21	3.28	78.4	74.5	70.6	66.7
"	8	4.76	2.34	$3 \cdot 52$	61.0	58.2	$55 \cdot 4$	52.5
5	9	5.30	1.83	2.56	64.4	60.4	56.4	52.3
"	6.50	3.90	1.95	2.79	48.1	45.4	42.6	39.8
4	5.25	3.10	1.56	2.06	36.1	$33 \cdot 3$	30.5	27.8

LACED CHANNEL COLUMNS
Safe loads are based on New York Building Law Formula
Safe loads given are total safe loads in thousand pounds
For sections to the left of the heavy line, $\frac{l}{r}$ is less than 120
$\mathrm{d}=$ Distance back to back in inches to make r equal about both axes

Unbraced Span in Feet.							
16	18	20	22	24	26	28	30
422.0	413.3	404.6	395.9	387.1	378.4	369.7	360.9
384.5	376.7	368.9	361.1	353.2	345.4	337.6	329.7
347.1	340.1	333.2	326.3	319.4	312.4	305.5	298.6
309.3	303.2	297.2	291.2	285.1	279.1	273.1	267.1
271.7	266.6	261.5	256.3	251.2	246.1	240.9	235.8
261.7	256.8	251.9	247.0	242.1	237.2	232.3	227.4
293.5	285.5	$277 \cdot 5$	269.5	261.5	253.5	245.4	$237 \cdot 4$
257.9	251.0	244.1	237.2	230.4	223.5	216.6	209.8
222.2	216.5	210.8	205.0	199.3	193.5	187.8	182.1
186.5	181.9	177.3	172.6	168.0	163.4	158.8	${ }^{1} 54.2$
${ }^{1} 54.2$	150.5	146.9	143.3	1 39.6	I 36.0	132.3	128.7
176.9	171.1	165.3	${ }^{1} 59.5$	${ }^{1} 53.7$	147.9	142.1	${ }_{1} 36.2$
143.0	138.5	134.0	129.6	125.1	120.6	116.1	III. 7
109.9	106.7	103.5	100.3	97.1	93.9	90.7	87.5
138.0	132.9	127.8	122.7	117.6	112.5	107.4	102.3
105.2	101.6	98.0	94.3	90.7	87.1	83.5	79.9
$93 \cdot 4$	90.3	87.2	84.1	8 r .0	77.9	74.8	71.7
108.5	103.9	$99 \cdot 3$	$94 \cdot 7$	90.1	85.4	80.8	
92.6	88.8	85.1	8 I .3	77.5	73.8	70.0	
77.9	74.9	71.9	68.9	65.9	62.9	59.9	56.9
$93 \cdot 3$	88.4	83.6	78.8	73.9			
78.5	74.6	70.7	66.9	63.0			
63.3	60.4	57.5	54.6	51.6	48.7		
76.2	71.2	66.2					
62.8	58.9	55.0	51.1				
49.7	46.9	44.0	41.2				
$\begin{aligned} & 48.3 \\ & 37.0 \end{aligned}$	$\begin{aligned} & 44 \cdot 3 \\ & 34 \cdot 2 \end{aligned}$						

TABLE 38

STRESS DUE TO WEIGHT OF SECTION

The extreme fiber stress due to the weight of a member may be determined by the formula given below. The general formula and table are based on the member acting as a beam supported at the two ends. The bending produced for the horizontal span L is the same whether the member is horizontal or inclined.

Let $\quad R=$ extreme fiber stress in pounds per square inch, $L=$ simple horizontal span in feet,
$r=$ radius of gyration of section about axis at right angles to load,
$e=$ distance in inches from neutral axis to extreme fiber in question,
Then $\quad R=\frac{5 \cdot \mathrm{I} e L^{2}}{r^{2}}$.
Since bending produces compression in the upper fiber and tension in the lower fiber; for members having direct compressive stress, R for the upper fiber is added to the direct compression in pounds per sq. in.; for members having direct tensile stress, R for the lower fiber is added to the direct tension in pounds per sq. in. See combined stresses under specifications.

In the above formula R varies directly as e and inversely as r^{2}; it is therefore important that r should be as large as possible and that e should be as small as possible for a given section.

The following table gives values of R for tension and compression members. For angles subject to direct compression the angle is placed thus angle is placed thus

STRESS DUE TO WEIGHT FOR ANGLES

EXTREME FIBER STRESS IN POUNDS PER SQUARE INCH

$\left\|\begin{array}{c} \text { Size } \\ \text { of } \\ \text { Angle } \end{array}\right\|$	$\begin{aligned} & \dot{\omega} \\ & \text { 妾 } \end{aligned}$	e		Simple Horizontal Span in Feet												
				6	8	10	12	14	16	18	20	22	24	26	28	30
	5.86	2.03	I. 90	100	180	290	410	560	740	930	1150	1390	50	1940	5	2580
	4.75	I. 99	I. 91	100	180	280	400	550	710	900	1110	I 350	1600	1880	2180	2500
	4.18	I. 96	1. 92	100	170	270	390	530	690	880	1080	1310	1560	1830	2120	2440
	3.61	I. 94	1. 93	100	170	270	380	520	680	860	1060	1280	1530	1790	2080	2390
$5 \times 3 \frac{1}{2} \times \frac{1}{2}$	4.00	I. 66	I. 58	120	220	340	490	660	870	1100	1360	1640	1950	2290	2660	3050
$\times 1$	3.53	1. 63	1. 59	120	210	330	470	650	840	1070	1320	1590	1900	2220	2580	2960
	3.05	I. 61	1. 60	120	210	320	460	630	820	1040	1280	1550	1850	2170	2520	2890
$\times \frac{5}{16}$	2.56	I. 59	т.61	I 10	200	310	450	610	800	Iо10	1250	T520	1800	2120	2450	2820
4×4	3.75	I.	1.22	150	260	400	580	790	1030	1310	1620	1960	2330	2730	3170	3640
	3.35	I. 16	1.23	140	250	390	560	770	1000	1270	1560	1890	2250	2640	3070	3520
	2.8	I. 14	1.23	140	250	380	550	750	980	1240	1540	1860	2210	2600	3010	3460
	2.40	1.12	24	130	240	370	530	730	95°	1200	1480	1800	2140	2510	2910	
4×3	2.87	1. 30		150	27	420	610	830	1090	1370	1700	2050	2440	2870	3320	3820
	2.48	I.28	26	I50	260	410	590	810	1050	1330	1640	1990	2370	2780	3220	3700
	2.09	1.26	1.27	140	260	400	570	780	1020	1290	1590	1930	2290	2690	3120	3580
3×3	2.	. 89	. 91	200	350	550	790	1070	1400	1780	2190	2650	3160	3700	4300	4930
	I. 78	. 87	. 92	190	340	520	750	1030	1340	1700	2100	2540	3020	3540	4110	4720
	1.44	. 84	. 93	180	320	500	710	970	1270	1600	1980	2400	2850	3350	3880	4460
$3 \times 2 \frac{1}{2} \times \frac{3}{8}$	1.92	.96	. 93	200	360	570	820	IIIO	1450	1830	2260	2740	3260	3830	4440	5090
$\times \frac{5}{16}$	I. 6	. 93	. 94	190	340	540	770	1050	1380	1740	2150	2600	3090	3630	421	4830
\times	1.31	'91	. 95	190	330	510	740	1010	I 320	1670	2060	2490	2960	3470	4030	4630
$\left\|\begin{array}{r} 2 \frac{1}{2} \times 2 \times \frac{5}{16} \\ \times \frac{1}{4} \end{array}\right\|$	1.31	. 81	. 78	240	440	680	980	I 330	1740	2200	2720	3290	3910	4590	5320	596
	1.	. 79	. 78	240	420	660	950	1300	1700	2150	2650	3200	3810	4480	5	5960

AREA OF ONE PLATE

AREA OF ONE PLATE

AREA IN SQUARE INCHES DEDUCTED FOR ONE HOLE

NET SECTION IN SQ. IN. OF ONE ANGLE DEDUCTING ONE $3^{\prime \prime}$ HOLE

Thickness.	$\frac{1}{4}$	$\frac{5}{16}$	$\frac{3}{8}$	$\frac{7}{16}$	$\frac{1}{2}$	$\frac{9}{16}$	$\frac{5}{8}$	$\frac{11}{16}$	$\frac{3}{4}$	$\frac{13}{16}$	$\frac{7}{8}$	$\frac{15}{16}$	1
Deducted.	. 19	. 23	. 28	. 33	. 38	. 42	. 47	. 52	. 56	.61	. 66	. 70	. 75
8×8	- .	.	- .	- .	$7 \cdot 37$	8.26	9.14	10.01	10.88	11.73	12.57	13.42	14.25
$7 \times 3 \frac{1}{2}$.	.		4.07	4.62	5.17	5.70	6.23	6.75	7.26	7.76	8.27	8.75
6×6	- .	- .	4.08	4.73	$5 \cdot 37$	6.01	6.64	7.26	7.88	8.48	9.08	9.67	10.25
6×4	- .	- .	3.33	3.85	4.37	4.89	$5 \cdot 39$	5.89	6.38	6.86	$7 \cdot 33$	7.80	8.25
$5 \times 3 \frac{1}{2}$	- .	2.33	2.77	3.20	3.62	4.05	4.45	4.85	5.25	5.64	6.01		
4×4	- .	2.17	2.58	2.98	3.37	3.76	4.14	4.51	4.88	5.23			
4×3		I. 86	2.20	2.54	2.87	3.20	3.51	3.82	4. I3	4.42			
3×3	1.25	1.55	I. 83	2.10	2.37	2.64	2.89						
$3 \times 2 \frac{1}{2}$	1.12	1.39	1. 64	I. 89	2.12	2.36							
$2 \frac{1}{2} \times 2 \frac{1}{2}$	1.00	1.24	1.45	1.67	1.87						-		
$2 \frac{1}{2} \times 2$. 87	1.08	1.27	1. 45	1.62								
2×2	. 75	. 92	1.08	1.23									

NET SECTION IN SQ. IN. OF ONE ANGLE DEDUCTING TWO $3^{\prime \prime \prime}$ HOLES

Thickness.	$\frac{1}{4}$	$\frac{5}{16}$	$\frac{3}{8}$	$\frac{7}{16}$	$\frac{1}{2}$	$\frac{9}{16}$	$\frac{5}{8}$	$\frac{11}{16}$	$\frac{3}{4}$	$\frac{13}{16}$	$\frac{7}{8}$	$\frac{15}{16}$	1
Deducted.	. 38	. 47	. 56	. 66	. 75	. 84	. 94	1.03	1.13	1.22	I. 31	1.41	1.50
8×8	- .	- .	- .	- .	7.00	7.84	8.67	9.50	10.31	11.12	11.92	12.71	13.50
$7 \times 3 \frac{1}{2}$				3.74	4.25	4.75	5.23	5.72	6.18	6.65	7.11	7.56	8.00
6×6			3.80	4.40	5.00	$5 \cdot 59$	6.17	6.75	$7 \cdot 31$	7.87	8.43	8.96	9.50
6×4		.	3.05	$3 \cdot 52$	4.00	4.47	4.92	$5 \cdot 38$	5.81	6.25	6.68	7.09	7.50
$5 \times 3 \frac{1}{2}$	- .	2.09	2.49	2.87	3.25	3.63	3.98	$4 \cdot 34$	4.68	5.03	$5 \cdot 36$		
4×4		1.93	2.30	2.65	3.00	3.34	3.67	4.00	$4 \cdot 3 \mathrm{I}$	4.62			-
4×3		1.62	1.92	2.21	2.50	2.78	3.04	$3 \cdot 31$	$3 \cdot 56$	3.81			
3×3	1.06	1.3I	1.55	1.77	2.00	2.22	2.42						
$3 \times 2 \frac{1}{2}$. 93	I.15	1. 36	1.56	1.75	1.94							
$2 \frac{1}{2} \times 2 \frac{1}{2}$.8I	1.00	1.17	I. 34	1.50								
$2 \frac{1}{2} \times 2$. 68	. 84	. 99	1.12	1.25								
2×2	. 56	. 68	. 80	. 90									

NET SECTION IN SQ. IN. OF ONE ANGLE DEDUCTING THREE $3^{3 \prime}$ HOLES

Thickness.	$\frac{3}{8}$	$\frac{7}{16}$	$\frac{1}{2}$	$\frac{9}{16}$	$\frac{5}{8}$	$\frac{11}{16}$	$\frac{3}{4}$	$\frac{13}{16}$	$\frac{7}{8}$	$\frac{15}{16}$	1
Deducted.	. 84	. 98	1.13	1.27	1.41	1.55	1.69	1.83	1.97	2.12	2.25
8×8		. . .	6.62	7.4I	8.20	8.98	9.75	10.51	11.26	12.01	12.75
6×6	$3 \cdot 52$	4.08	4.62	5.16	$5 \cdot 70$	6.23	6.75	7.26	7.77	8.26	8.75

(91)

TABLE 42

NET SECTION IN SQ. IN. OF ONE ANGLE DEDUCTING ONE $\frac{z_{1}^{\prime \prime}}{8}$ HOLE

Thickness.	$\frac{1}{4}$	$\frac{5}{16}$	$\frac{3}{8}$	$\frac{7}{16}$	$\frac{1}{2}$	$\frac{9}{16}$	$\frac{5}{8}$	$\frac{11}{16}$	$\frac{3}{4}$	$\frac{13}{16}$	$\frac{7}{8}$	$\frac{15}{16}$	1
Deducted.	. 22	. 27	. 33	. 38	. 44	. 49	. 55	. 60	. 66	. 71	. 77	. 82	. 88
8×8	- •	7.31	8.19	9.06	9.93	10.78	11.63	12.46	13.30	14.12
$7 \times 3 \frac{1}{2}$	- .		- .	4.02	4.56	5.10	5.62	6.15	6.65	7.16	7.65	8.15	8.62
6×6		- .	4.03	4.68	$5 \cdot 3 \mathrm{I}$	5.94	6.56	7.18	7.78	8.38	8.97	9.55	10.12
6×4	- .	- .	3.28	3.80	$4 \cdot 31$	4.82	5.3I	5.81	6.28	6.76	7.22	7.68	8.12
$5 \times 3{ }^{\frac{1}{2}}$	- .	2.29	2.72	3.15	$3 \cdot 56$	3.98	4.37	4.77	5.15	$5 \cdot 54$	5.90		
4×4		2.13	2.53	2.93	$3 \cdot 3$ I	3.69	4.06	4.43	4.78	5.13			
4×3	- .	1.82	2.15	2.49	2.81	3.13	3.43	$3 \cdot 74$	4.03	$4 \cdot 32$			
3×3	1.22	1.51	1. 78	2.05	2.31	2.57	2.81						
$3 \times 2 \frac{1}{2}$	1.09	I. 35	1. 59	1.84	2.06	2.29							
$2 \frac{1}{2} \times 2 \frac{1}{2}$. 97	1.20	I. 40	1.62	I.8I								
$2 \frac{1}{2} \times 2$. 84	1.04	1.22	1.40	1.56								
2×2	. 72	. 88	1.03	1.18									

NET SECTION IN SQ. IN. OF ONE ANGLE DEDUCTING TWO $\frac{7 / \prime}{8}$ HOLES

Thickness.	$\frac{1}{4}$	$\frac{5}{16}$	$\frac{3}{8}$	$\frac{7}{16}$	$\frac{1}{2}$	$\frac{9}{16}$	$\frac{5}{8}$	$\frac{11}{16}$	$\frac{3}{4}$	$\frac{13}{16}$	$\frac{7}{8}$	$\frac{15}{16}$	1
Deducted.	. 44	. 55	. 66	. 77	. 88	. 98	1.09	1.20	1.31	1.42	1.53	1. 64	1.75
8×8	- .	.	- .	- .	6.87	7.70	8.52	$9 \cdot 33$	10.13	10.92	11.70	12.48	13.25
$7 \times 3 \frac{1}{2}$	- .	- .	- .	3.63	4.12	4.61	5.08	$5 \cdot 55$	6.00	6.45	6.89	7.33	7.75
6×6	- .	- -	3.70	4.29	4.87	$5 \cdot 45$	6.02	6.58	7.13	7.67	8.21	8.73	9.25
6×4	- .		2.95	3.41	3.87	4.33	4.77	5.21	5.63	6.05	6.46	6.86	7.25
$5 \times 3{ }^{\frac{1}{2}}$	- .	2.01	2.39	2.76	3.12	3.49	3.83	4.17	4.50	4.83	5.14		
4×4	- -	т. 85	2.20	2.54	2.87	3.20	$3 \cdot 52$	3.83	4.13	4.42			
4×3	- •	1.54	1.82	2.10	2.37	2.64	2.89	3.14	$3 \cdot 38$	3.61			
3×3	1.00	1.23	1.45	I. 66	1.87	2.08	2.27						
$3 \times 2 \frac{1}{2}$. 87	1.07	1.26	1.45	1.62	1.80							
$2 \frac{1}{2} \times 2 \frac{1}{2}$. 75	. 92	1.07	1.23	1.37								
$2 \frac{1}{2} \times 2$. 62	.76	. 89	1.01	1.12								
2×2	.50	. 60	. 70	. 79			-						

NET SECTION IN SQ. IN. OF ONE ANGLE DEDUCTING THREE $\frac{7}{8 \prime \prime}$ HOLES

Thickness.	$\frac{3}{8}$	$\frac{7}{16}$	$\frac{1}{2}$	$\frac{9}{16}$	$\frac{5}{8}$	$\frac{11}{16}$	$\frac{3}{4}$	$\frac{13}{16}$	$\frac{7}{8}$	$\frac{15}{16}$	1
Deducted.	.98	1.15	1.3 I	1.48	1.64	1.80	1.97	$\mathbf{2 . 1 3}$	$\mathbf{2 . 3 0}$	$\mathbf{2 . 4 6}$	$\mathbf{2 . 6 3}$
8×8	.	.	6.44	7.20	7.97	8.73	9.47	10.21	10.93	11.66	12.37
6×6	3.38	3.91	4.44	4.95	5.47	5.98	6.47	6.96	7.44	7.91	8.37

NET SECTION IN SQ. IN. OF ONE ANGLE DEDUCTING ONE $1^{\prime \prime}$ HOLE

Thickness	$\frac{1}{4}$	$\frac{5}{16}$	$\frac{4}{8}$	$\frac{7}{16}$	$\frac{1}{2}$	$\frac{9}{16}$	$\frac{5}{8}$	$\frac{11}{16}$	$\frac{3}{4}$	$\frac{13}{16}$	$\frac{7}{8}$	$\frac{15}{16}$	I
Deducted.	. 25	. 31	.38	. 44	. 50	. 56	. 63	. 69	$\cdot 75$.81	. 88	. 94	1.00
8×8	- .	- .	-		7.25	8.12	8.98	9.84	10.69	11.53	12.35	13.18	14.00
$7 \times 3{ }^{\frac{1}{2}}$	- .	- .	- .	3.96	4.50	5.03	$5 \cdot 54$	6.06	6.56	7.06	7.54	8.03	8.50
6×6	- -	- .	3.98	4.62	5.25	5.87	6.48	7.09	7.69	8.28	8.86	9.43	10.00
6×4		- .	3.23	3.74	4.25	4.75	5.23	5.72	6.19	6.66	7.11	7.56	8.00
$5 \times 3{ }^{\frac{1}{2}}$	- .	2.25	2.67	3.09	$3 \cdot 50$	3.91	4.29	4.68	5.06	$5 \cdot 44$	$5 \cdot 79$		
4×4	- .	2.09	2.48	2.87	3.25	3.62	3.98	4.34	4.69	5.03			
4×3		1.78	2.10	2.43	2.75	3.06	$3 \cdot 35$	3.65	3.94	4.22			
3×3	1.19	1.47	1.73	1.99	2.25	2.50	2.73						
$3 \times 2 \frac{1}{2}$	1.06	1.3I	I. 54	1.78	2.00	2.22							
$2 \frac{1}{2} \times 2 \frac{1}{2}$. 94	1.16	I. 35	1.56	1.75								
$2 \frac{1}{2} \times 2$.8I	1.00	I. 17	1. 34	1.50								
2×2	. 69	. 84	. 98	1.12									

NET SECTION IN SQ. IN. OF ONE ANGLE DEDUCTING TWO $1^{\prime \prime}$ HOLES

Thickness	$\frac{1}{4}$	$\frac{5}{16}$	$\frac{3}{8}$	$\frac{7}{16}$	$\frac{1}{2}$	$\frac{9}{16}$	$\frac{5}{8}$	$\frac{11}{16}$	$\frac{3}{4}$	$\frac{13}{16}$	$\frac{7}{8}$	$\frac{15}{16}$	I
Deducted.	. 50	. 63	. 75	. 88	1.00	I. 13	1.25	1.38	1.50	1.63	I. 75	1.88	2.00
8×8	- .	-	- .	- .	6.75	$7 \cdot 55$	8.36	9.15	9.94	10.71	11.48	12.24	13.00
$7 \times 3 \frac{1}{2}$.	- .	- \cdot	$3 \cdot 52$	4.00	$4 \cdot 46$	4.92	$5 \cdot 37$	5.81	6.24	6.67	7.09	7.50
6×6	.	- .	3.61	4.18	4.75	$5 \cdot 30$	5.86	6.40	6.94	7.46	7.99	8.49	9.00
6×4		-	2.86	3.30	3.75	4.18	4.61	5.03	5.44	5.84	6.24	6.62	7.00
5×3 菫	- •	1.93	2.30	2.65	3.00	3.34	3.67	3.99	4.31	4.62	4.92		
4×4	-	1.77	2.11	2.43	2.75	3.05	3.36	3.65	3.94	4.2 I			
4×3	-	I. 46	1.73	1.99	2.25	2.49	2.73	2.96	3.19	3.40			
3×3	. 94	1.I5	1.36	1. 55	1.75	1.93	2.11						
$3 \times 2 \frac{1}{2}$.8I	. 99	1.17	1.34	1.50	1.65							
$2 \frac{1}{2} \times 2 \frac{1}{2}$. 69	. 84	. 98	1.12	1. 25								
$2 \frac{1}{2} \times 2$. 56	. 68	. 80	. 90	1.00		.						
2×2	. 44	. 52	.6I	. 68									

NET SECTION IN SQ. IN. OF ONE ANGLE DEDUCTING THREE $1^{\prime \prime}$ HOLES

Thickness	$\frac{3}{8}$	$\frac{7}{16}$	$\frac{1}{2}$	$\frac{9}{16}$	$\frac{5}{8}$	$\frac{11}{16}$	$\frac{3}{4}$	$\frac{13}{16}$	$\frac{7}{8}$	$\frac{15}{16}$	I
Deducted.	1.13	1.3I	1.50	1.69	1.88	2.06	2.25	2.44	2.63	2.81	3.00
8×8	- •	- .	6.25	6.99	7.73	8.47	9.19	9.90	10.60	I 1.3I	12.00
6×6	3.23	3.75	4.25	4.74	5.23	5.72	6.19	6.65	7.11	$7 \cdot 56$	8.00

Deducting one hole in top flange and one hole in bottom flange, using standard gauge and maximum size rivet

TABLE
45

NET VALUES OF CHANNELS. ABOUT AXIS BB
Deducting one hole in top flange and one hole in bottom flange, using standard gauge and maximum size rivet

Channel.				Deduct fur Holes.			Net Values of Channel		
Depth.	Weight.			1	C	S	I	C	S
15	55	$\frac{3}{4}$	$\frac{7}{8}$	56.6	80400	$7 \cdot 5$	373.6	531500	49.9
،	50	"	"	"	"	"	346.1	492300	46.2
"	45	"	"	"	"	"	318.5	453100	42.5
"	40	"	"	59.1	84100	7.9	288.4	410100	38.4
"	35	،	"	"	"	"	260.9	370900	34.8
"	33	"	"	"	"	"	253.5	360400	33.8
12	40	$\frac{3}{4}$	$\frac{7}{8}$	$27 \cdot 3$	48500	$4 \cdot 5$	169.7	301700	28.3
"	35	"	"	"	،	/	152.0	270300	25.4
"	30	"	"	"	"	،	134.4	238900	22.4
"	25	"	"	"	"	"	116.7	207600	19.5
"	20.50	،	"	"	"	"	100.8	179300	16.9
10	25	$\frac{3}{4}$	$\frac{7}{8}$	15.2	32400	3.0	75.8	161700	15.2
"	20	،	"	17.5	37300	3.5	61.2	130700	12.2
"	15	"	"	"	"	"	$49 \cdot 4$	105400	9.9
9	20	$\frac{3}{4}$	$\frac{7}{8}$	12.2	28900	2.7	48.6	115200	10.8
،	15	"	"	13.1	31100	2.9	37.8	89400	8.4
"	13.25	"	"	"	"	"	34.2	81100	7.6
8	16.25	$\frac{3}{4}$	$\frac{7}{8}$	$9 \cdot 5$	25400	2.4	30.4	81000	7.6
"	13.75	"	"	"	"	"	26.5	70600	6.6
"	I 1.25	"	"	"	"	"	22.8	60700	$5 \cdot 7$
7	14.75	$\frac{5}{8}$	$\frac{3}{4}$	$5 \cdot 7$	17400	1. 6	21.5	65400	6.2
"	12.25	"	"	"	"	،	18.5	56300	$5 \cdot 3$
"	9.75	"	"	"	"	"	15.4	49400	$4 \cdot 4$
6	13	$\frac{5}{8}$	$\frac{3}{4}$	4.I	14700	1. 4	13.2	46900	$4 \cdot 4$
"	10.50	"	"	،	،	"	11.0	39100	3.6
"	8	"	"	"	،	"	8.9	31500	2.9

TABLE 46

NET VALUES OF COVER PLATES
About axis BB. The value of d is such that the plates may be used as cover plates for beams and channels

$\begin{aligned} & \text { 亩 } \\ & \text { 烒 } \end{aligned}$				Net Area Plates.	$\begin{gathered} \text { Net } \\ \text { Value } \\ \text { of } \\ \text { Plates. } \\ \text { I } \end{gathered}$					Net Area $\stackrel{\text { of }}{\text { plates. }}$	
24	8×1	$\frac{7}{8}$	I	14.00	2188.7	15	8×1	$\frac{3}{4}$	$\frac{7}{8}$	14.25	9 I 3.2
"	$8 \times \frac{7}{8}$	"	"	12.25	1895.8	"	$8 \times \frac{7}{8}$	"	"	12.47	786.4
"	$8 \times \frac{3}{4}$	"	"	10.50	${ }_{1608.4}$	"	$8 \times \frac{3}{4}$	"	"	10.69	663.3
"	$8 \times \frac{5}{8}$	"	"	8.75	1326.8	"	$8 \times \frac{5}{8}$	"	"	8.91	543.9
"	$8 \times \frac{1}{2}$	"	"	7.00	1050.6	"	$8 \times \frac{1}{2}$	"	"	7.13	428. 1
						"	$8 \times \frac{3}{8}$	"	"	$5 \cdot 34$	315.9
24	7×1	$\frac{7}{8}$	1	12.00	1876.0						
"	$7 \times \frac{7}{8}$	"	"	10.50	1624.9	15	6×1	$\frac{3}{4}$	$\frac{7}{8}$	$10.2{ }^{\text {j }}$	656.8
"	$7 \times \frac{3}{4}$	"	"	9.00	1378.6	"	$6 \times \frac{7}{8}$	"	"	8.97	565.6
"	$7 \times \frac{5}{8}$	،	"	7.50	1137.2	"	$6 \times \frac{3}{4}$	"	"	7.69	477.1
"	$7 \times \frac{1}{2}$	"	،	6.00	900.5	"	$6 \times \frac{5}{8}$	"	"	6.41	391.2
						"	$6 \times \frac{1}{2}$	"	"	$5 \cdot 13$	307.7
20	8×1	$\frac{7}{8}$	I	14.00	${ }^{1} 544.7$	"	$6 \times \frac{3}{8}$	"	"	3.84	227.2
،	$8 \times \frac{7}{8}$	"	"	12.25	$1335 \cdot 3$						
"	$8 \times \frac{3}{4}$	"	"	10.50	I 130.7	12	$8 \times \frac{3}{4}$	${ }^{\frac{3}{4}}$	$\frac{7}{8}$	10.69	434.8
"	$8 \times \frac{5}{8}$	"	"	8.75	930.8	"	$8 \times \frac{5}{8}$	"	"	8.91	355.2
"	$8 \times \frac{1}{2}$	،	"	7.00	735.6	"	$8 \times \frac{1}{2}$	"	"	7.13	278.5
						"	$8 \times \frac{3}{8}$	"	"	$5 \cdot 34$	204.6
20	6×1	$\frac{7}{8}$	1	10.00	1103.3	"	8×1	"	"	3.56	133.7
"	$6 \times \frac{7}{8}$	"	"	8.75	953.8						
"	$6 \times \frac{3}{4}$	"	"	7.50	807.6	12	$6 \times \frac{3}{4}$	$\frac{3}{4}$	$\frac{7}{8}$	7.69	312.8
"	$6 \times \frac{5}{8}$	"	"	. 6.25	664.9	،	$6 \times \frac{5}{8}$	"	"	6.41	255.5
"	$6 \times \frac{1}{2}$	"	"	- 5.00	525.4	"	$6 \times \frac{1}{2}$	"	"	5.13	200.3
						"	$6 \times \frac{3}{8}$	"	"	3.84	147.2
18	8×1	$\frac{7}{8}$	I	14.00	1264.7	،	$6 \times \frac{1}{4}$	"	"	2.56	96.1
"	$8 \times \frac{7}{8}$	"	"	12.25	1091. 8						
"	$8 \times \frac{3}{4}$	"	"	10.50	$92.3 \cdot 3$	10	$6 \times \frac{5}{8}$	$\frac{3}{4}$	$\frac{7}{8}$	6.41	181.0
"	$8 \times \frac{5}{8}$	"	"	8.75	759.1	"	$6 \times \frac{1}{2}$	"	،	5.13	14 I .4
"	$8 \times \frac{1}{2}$	،	"	7.00	599.1	"	$6 \times \frac{3}{8}$	"	"	3.84	103.5
						"	$6 \times \frac{1}{4}$	"	"	2.56	67.3
18	6×1	$\frac{7}{8}$	1	10.00	$903 \cdot 3$						
"	$6 \times \frac{7}{8}$	"	"	8.75	779.9	9	6× ${ }^{\frac{5}{8}}$	$\frac{3}{4}$	$\frac{7}{8}$	6.41	148.6
"	$6 \times \frac{3}{4}$	"	"	7.50	659.5	،	$6 \times \frac{1}{2}$	"	"	5.13	115.7
"	$6 \times \frac{5}{8}$	"	"	6.25	542.2	"	$6 \times \frac{3}{8}$	"	"	3.84	84.5
"	$6 \times \frac{1}{2}$	"	"	5.00	427.9	"	$6 \times \frac{1}{4}$	"	"	2.56	54.8

PLATE GIRDERS

GRAPHIC IN DESIGN OF PLATE GIRDERS

Uniform loading. - The equation for bending moment in inch-pounds for uniform loading is, -
(a) $B=\frac{3}{2} w L^{2}-6 w x^{2}$,*
where $B=$ bending moment in inch-pounds,
$w=$ load in pounds per lineal foot of girder, including weight of girder,
$L=$ span in feet,
$x=$ distance in feet of section of moments from center of girder.

Fig. I.

Equation (a) is a parabola and represents a curve of the form $R A S$, Fig. I. Such a curve may be made the basis of graphical design, if vertical distances from the curve to the line $R S$ represent bending moments for that point in the span.

The equation for moment of resistance is, -

$$
\begin{equation*}
M_{r}=\frac{R I}{e} \tag{b}
\end{equation*}
$$

where $\quad M_{r}=$ moment of resistance,
$R=$ safe extreme fiber stress in pounds per sq. in.,
$I=$ moment of inertia,
$e=$ distance in inches of extreme fiber from neutral axis.

[^0]Where $B=$ bending moment in foot-pounds.
The values of the other terms are the same as in equation (a). Reducing the bending moment to inchpounds by multiplying equation $\left(a^{\prime}\right)$ by 12 gives equation (a).

Where the value of $x=0$ at the center of the span, equation $\left(a^{\prime}\right)$ becomes $B=\frac{w L^{2}}{8}$, or reducing this value to inch-pounds, $B=\frac{3}{2} w L^{2}$.

PLATE GIRDER.S

From equation (b), R and e being constants, I varies directly as M_{r}. It is then at once possible from a moment diagram such as Fig. I exhibits to scale the values of I by changing the scale of the figure by the proper ratio of multiplication.

To make an application of the above to a particular loading and span, plot a curve similar to $R A S$, Fig. 1 , to any convenient scale, using the following values which are computed for a typical parabola.
Let $L=24$ feet, $w=20,000$ pounds,
then for $x=0$, $B=17,280,000$

$$
x= \pm \quad \mathrm{I}, \quad . \quad . \quad . \quad B=17,160,000
$$

$$
\pm 2, \quad . \quad . \quad . \quad . \quad . \quad 16,800,000
$$

$$
\pm 3, . \quad . \quad . \quad . \quad . \quad .16,200,000
$$

$$
\pm 4, ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ 15,360,000 ~
$$

$$
\pm \text { 5, 14,280,000 }
$$

$$
\pm 6, \quad . \quad . \quad . \quad . \quad . \quad . \quad .12,960,000
$$

$$
\pm 7, \quad . \quad . \quad . \quad . \quad . \quad . \quad 11,400,0<0
$$

$$
\pm 8, \quad . \quad 9,600,000
$$

$$
\pm 9 . \quad 7.56 c, 000
$$

$$
\pm \text { Iо, 5,2,30,000 }
$$

$$
\pm \text { II, } 2760,000
$$

$$
\pm 12, . \quad .
$$

Fig. 2.
(9)

PLATE GIRDERS

Compute the moment at the center of the span from equation (a) which for this point reduces to $B=\frac{3}{2} w L^{2}$. Conditions of design will give the depth of girder from which the value of e is obtained, whence $I=\frac{M_{r} e}{R}$ may be computed.

The curve, in connection with the tables for plate girders may now be made the basis of further determinations as follows, see Fig. 2. Draw the radial line $x x$ representing I above determined, to a convenient scale. In a similar mannerdraw $y y$ to represent half the span to a convenient scale. Proceed as in the following case in which the required moment of inertia at the center of the girder is 97,000 , and the span 480 inches.

Uniform Loading

(1) Assume that no part of the web acts as flange, and a girder depth of $60 \frac{1}{2}$ inches back to back of flange angles. From table No. 49 the value of four $8 \times 8 \times \frac{3}{3}$ angles, $60 \frac{1}{2}$ inches back to back, is $3 \mathrm{I}, 384$, which leaves 65,616 to be provided for in cover plates. From table No. 51 for two 20 -inch cover plates on angles $60 \frac{1}{2}$ inches back to back, the nearest value is 65,677 for two $\frac{7}{8}$ inch plates. This can be made up of six $20 \times \frac{5}{8}$-inch plates, three on top and three on bottom. From the same table the value of two $20 \times \frac{5}{8}$-inch plates is 21,017 ,* and two $20 \times 1 \frac{1}{2}$-inch plates is 42,903 ,

Fig. 3.

[^1]
PLATE GIRDERS

Represent these values to scale on the line $x x$ and draw lines parallel to $R S$ until they intersect the curve RAS. From these points of intersection draw vertical lines to intersect $y y$, from which the length of the cover plates may be scaled. The cover plates shown in the figures are allowed to extend beyond this point 18 inches. This distance is an arbitrary figure, and will depend on the distance required to develop the plate, and the inclination of the curve. The web plate and stiffener angles are not considered in this example, as the tables give values for flanges only. The required girder is therefore made up of four angles, $8 \times 8 \times \frac{3}{4}, 60 \frac{1}{2}$ inches back to back, and six cover plates, $20 \times \frac{5}{8}$ inches as flanges.
(2) Assume the same conditions as in example (r), except that $\frac{1}{8}$ of the $60 \times \frac{3}{4}$ inch web plate is considered as flange. See Fig. 3. From table No. 47, the value of a $60 \times \frac{3}{4}$ inch plate with 8×8 inch flange angles is 880 r; the value of four $8 \times 8 \times \frac{3}{4}$ inch flange angles $60 \frac{1}{2}$ inches back to back is $3 \mathrm{r}, 384$; as given in example (r), the re-

Fig. 4.
mainder of 56,460 is made up of cover plates in the same manner as in example (1). Lines are drawn from $x x$ to " $C L$ of Girder " parallel to $R S$; from this line all lines parallel to the line representing the value of the web until they intersect the curve $R A S$; the remainder of the operation is the same as in example (I).

Concentrated Loading

(3) Assume a girder of 480 inches span, supporting two concentrated loads, requiring a moment of inertia shown in Fig. 4 and bounded by the lines RBS. The uniform load diagram is bounded by the lines $R C S$. Combining these diagrams by adding the ordinates, for example, $A D=C D+B D$, the diagram $R A S$ is obtained. By laying off to scale on a vertical line $S T$ the values of flange angles and cover plates and drawing lines parallel to $R D S$, the length of the cover plates is determined as shown in the figure.

RESISTANCE OF WEB PLATE TO BENDING STRESS

Fig. 5 .
The general formula for moment of resistance is $M_{r}=R I \div e$. This equation becomes $M_{r}=R A h \div 6$ for the rectangle shown; where $h=$ depth of web in inches and $A=$ area of section in square inches $=b h$. Therefore the resistance of a web plate to bending is equivalent to a flange of $\frac{1}{6}$ of the area of the web concentrated at each edge of the web plate.

If it be assumed that an equivalent to $\frac{1}{4}$ of the web be cut away for rivets, the equation takes the form $M_{r}=R A h \div 8$, or its resistance is equivalent to a flange of $\frac{1}{8}$ of the area of the web concentrated at each edge of the web plate.

The assumption is made in the discussion above that there is no shearing stress in the web, and hence is only applicable at the center of plate girders carrying uniform loads where the web plate is fully spliced.

The following table, giving moment of inertia of web plates, is based on $\frac{1}{8}$ of the area of the web plate as effective flange at the center of gravity of each pair of flange angles.

$+$
 TABLE 47

MOMENT OF INERTIA OF ONE WEB PLATE FOR PLATE GIRDERS ABOUT AXIS BB
$\frac{\lambda}{8}$ of area of web considered as effective flange at center of gravity of each pair of tlange angles Long leg of angles outstanding

Flange Angles.		Thickness of Web in Inches.											
Size.	$\begin{gathered} \text { Back } \\ \text { to } \\ \text { Back. } \end{gathered}$	$\frac{1}{4}$	$\frac{5}{16}$	$\frac{3}{8}$	$\frac{7}{16}$	$\frac{1}{2}$	$\frac{9}{16}$	$\frac{5}{8}$	$\frac{11}{16}$	$\frac{3}{4}$	$\frac{7}{8}$	1	
$4 \times 3 \times \frac{7}{16}$	1814	78	97	117	136	156	175	195	214	234	273	312	18
"	24 $\frac{1}{4}$	192	240	289	337	385	433	48 I	529	577	673	770	24
،	$30 \frac{1}{4}$	385	481	577	673	770	866	962	1058	${ }^{1} 54$	1347	1539	30
"	$36 \frac{1}{4}$	675	844	IOI3	1182	${ }^{1} 351$	1520	1688	1857	2026	2364	2701	36
$5 \times 3 \frac{1}{2} \times \frac{7}{16}$	$18 \frac{1}{4}$	76	96	115	134	153	172	191	210	229	268	306	18
	$24 \frac{1}{4}$	190	237	285.	332	379	427	474	522	569	664	759	24
"	$30 \frac{1}{4}$	380	476	57 I	666	761	856	951	1046	1141	${ }^{1} 332$	1522	30
"	$36 \frac{1}{4}$	669	836	1004	1171	1338	1506	1673	1840	2007	2342	2677	36
"	42 $\frac{1}{2}$	1089	1362	1634	1906	2178	2451	2723	2995	3268	3812	4357	42
$6 \times 4 \times \frac{1}{2}$	241 ${ }^{\frac{1}{4}}$	186	232	279	325	372	418	465	511	558	651	744	24
	$30 \frac{1}{4}$	375	468	562	656	749	843	937	1030	1124	1311	1498	30
"	$36 \frac{1}{4}$	661	826	99I	1156	1321	1486	1652	1817	1982	2312	2642	36
"	$42 \frac{1}{2}$	1077	1347	1616	1886	2155	2424	2694	2963	3232	3771	4310	42
"	$48 \frac{1}{2}$	1623	2029	2435	2840	3246	3652	4058	4463	4869	568I	6492	48
$6 \times 6 \times \frac{9}{16}$	$24 \frac{1}{4}$	163	203	244	285	325	366	407	447	. 488	569	65 I	24
"	$30 \frac{1}{4}$	337	422	506	591	675	759	844	928	1012	1181	I 350	30
"	$36 \frac{1}{4}$	606	758	909	1061	1213	1364	1516	1667	1819	2122	2425	36
"	$42 \frac{1}{2}$	1002	1253	1503	1754	2005	2255	2506	2756	3007	3508	4009	42
"	$48 \frac{1}{2}$	1524	1905	2286	2667	3048	3429	3810	4 I 9 I	4572	5335	6097	48
"	$54 \frac{1}{2}$	2201	2752	3302	3853	4403	4953	5504	6054	6604	7705	8806	54
"	$60 \frac{1}{2}$	3054	3818	45^{82}	5345	6ı09	6873	7636	8400	9163	10691	12218	60
"	$72 \frac{1}{2}$	5369	6711	8053	9395	10737	12079	1342 I	14764	16106	18790	21474	72
$8 \times 8 \times \frac{3}{4}$	$42 \frac{1}{2}$	945	II8I	1417	1653	1889	2125	2362	2598	2834	3306	3779	42
"	$48 \frac{1}{2}$	1448	1810	2172	2534	2896	3258	3620	3982	4344	5068	5792	48
"	$54 \frac{1}{2}$	2104	2630	3156	3683	4209	4735	5261	5787	6313	7365	8417	54
"	$60 \frac{1}{2}$	2934	3667	4401	5134	5867	6601	7334	8068	8801	10268	$\text { I I } 735$	60
"	$72 \frac{1}{2}$	5193	649 I	7789	9087	10386	I 1684	12982	14280	15578	18175	2077 I	72

TABLE 48

MOMENT OF INERTIA OF FOUR ANGLES

ABOUT AXIS BB DEDUCTING ONE HOLE FROM EACH ANGLE
One $\frac{7}{8 \prime \prime}$ hole deducted for angles less than ${ }^{\prime \prime}{ }^{\prime \prime}$ thick
One $x^{\prime \prime}$ hole deducted for angles over ${ }^{9}{ }^{\prime \prime}$ thick
Long legs of angles outstanding

Size of Angles．	Total Section．		Back to Back of Angles in Inches．								
	$\begin{array}{\|c\|} \hline \text { Gross } \\ \text { Weight. } \end{array}$	Net Area．	184	$24 \frac{1}{4}$	$30 \frac{1}{4}$	$36 \frac{1}{4}$	422 $\frac{1}{2}$	$48 \frac{1}{2}$	$54 \frac{1}{2}$	60 $\frac{1}{2}$	$72 \frac{1}{2}$
$4 \times 3 \times \frac{5}{16}$	28.4	7.28	516	947	1409	2202					
$\times \frac{3}{8}$	34.0	8.60	607	1115	1777	2595					
$\times \frac{7}{16}$	39.2	9.96	699	1286	2053	3098					
$\times \frac{1}{2}$	44.4	I 1.24	783	1444	2307	3372					
$\times \frac{9}{16}$	49.2	12.52	868	1602	2562	3747					
$5 \times 3 \frac{1}{2} \times \frac{5}{16}$	34.8	9.16	640	1177	1880	2748	3827				
$\times \frac{3}{8}$	41.6	10.88	756	I393	2227	3256	4536				
$\times \frac{7}{16}$	48.0	12.60	871	1608	2571	3762	5243				
$\times \frac{1}{2}$	54.4	14.24	977	1807	2894	4236	5908				
$\times \frac{9}{16}$	60.8	15.92	1087	2013	3226	4725	6591				
$\times \frac{5}{8}$	67.2	17.16	I 166	2162	3467	508I	7091				
$6 \times 4 \times \frac{3}{8}$	49.2	13.12	．	1661	2660	3894	5432	7148			
$\times \frac{7}{16}$	57.2	15.20	－．	1917	3072	4501	6280	8267			
$\times \frac{1}{2}$	64.8	17.24	－．	2163	3470	5087	7102	9352			
$\times \frac{9}{16}$	72.4	19.28	－．	2410	3869	5675	7926	10441			
$\times \frac{5}{8}$	80.0	20.92	－．	2605	4186	6144	8583	11309			
$\times \frac{11}{16}$	87.2	22.88	－．	2834	4559	6695	9359	12337			
$\times \frac{3}{4}$	94.4	24.76	－．	3055	4919	7228	10108	13327			
${ }_{6} 6 \times 4 \times \frac{3}{8}$	49.2	13.12	－－	1415	2335	3491	4946	6584			
曾 $\quad \times \frac{7}{16}$	57.2	15.20	．．	1632	2696	4034	5718	7614			
莀 $\times \frac{1}{2}$	64.8	17.24	－．	1840	3044	455^{8}	6465	8612			
言 $\times \frac{9}{16}$	72.4	19.28	－	2050	3393	4984	7214	9613			
\cdots	80.0	20.92	－．	2216	3672	5504	7812	10413			
\times 는 $\times \frac{11}{16}$	87.2	22.88	－．	2409	3897	5996	8517	11357			
$0 \times \frac{3}{4}$	94.4	24.76	－．	2596	43 II	6472	9197	12268			
$6 \times 6 \times \frac{3}{8}$	59.2	16.12	－．	1834	2993	4442	6261	8302	10634	13256	19371
$\times \frac{7}{16}$	68.8	18.72	－．	2121	3565	5146	7255	9624	12329	${ }^{1} 5372$	22469
$\times \frac{1}{2}$	78.4	21：24	－．	2397	3919	5824	8214	10899	13967	17417	25463
$\times \frac{9}{16}$	87.6	23.76	－．	2666	4364	6490	9160	12160	15587	19442	28434
$\times \frac{5}{8}$	96.8	25.92	－．	2897	4747^{\prime}	7064	9973	13242	16978	21180	30984
$\times \frac{11}{16}$	106.0	28.36	．．	3157	5178	7709	10889	14462	18546	23140	33860
$\times \frac{3}{4}$	114.8	30.76	－．	3405	5951	8330	11773	15643	20067	25045	3666 I
$8 \times 8 \times \frac{1}{2}$	105.6	29.24	－．	．．	．．	．．	108I7	14424	18557	23217	34115
$\times \frac{9}{16}$	I18．0	32.76	－．	－－	－．	－．	12093	16130	20757	25974	38土76
$\times \frac{5}{8}$	130.8	35.92	－．	－．	－．	－\cdot	13232	17655	22724	28439	41810
$\times 11$	143.2	39.36	．．	－．	－．	．．	14468	19309	24859	31117	45759
$\times \frac{3}{4}$	155.6	42.76	－．	－．	．．	－．	15667	20918	26940	33731	49622
$\times 18$	168.0	46.12	－．	．	．．	．．	1686I	22520	29009	36328	53457
$\times \frac{7}{8}$	180.0	49.40		－．	－	．	18021	24076	31021	38855	57190
$\times 15$	192.0	52.72	－．	－	－．	－．	19189	25645	33051	41405	60959
$\times 1$	204.0	56.00	．．	．	．．	．．	20317	27165	35021	43884	64636

	MOMENT OF INERTIA OF FOUR ANGLES about axis bb deducting two holes for each angle Two $\mathrm{z}^{\prime \prime}$ holes deducted for angles less than 䝠" thick Two $\mathrm{x}^{\prime \prime}$ holes deducted for angles over ${ }^{18}{ }^{\circ}{ }^{\prime \prime \prime}$ thick Long legs of angles outstanding										
$\underset{\substack{\text { Size of } \\ \text { Ancles. }}}{\text { chen }}$	Total Section.		Back to Back of Angles in Inches.								
	$\begin{aligned} & \text { Gross } \\ & \text { Weight. } \end{aligned}$	$\begin{aligned} & \text { Net } \\ & \text { Area. } \end{aligned}$	$18 \frac{1}{4}$	24i	$30 \frac{1}{4}$	$36 \frac{1}{4}$	$42^{\frac{1}{2}}$	$48 \frac{1}{\frac{1}{2}}$	$54 \frac{1}{2}$	$60 \frac{1}{2}$	$2 \frac{1}{2}$
$4 \times 3 \times \frac{5}{16}$	28.4	6.16	438	802	1278	1864					
$\times \frac{3}{8}$	34.0	7.28	515	945	1506	2198					
$\times \frac{7}{16}$	39.2	8.40	59 I	. 1086	1732	2530					
$\times \frac{1}{2}$	44.4	9.48	662	1219	1947	2845					
$\times \frac{9}{16}$	49.2	10.56	734	I353	2163	3162					
$5 \times 3 \frac{1}{2} \times \frac{5}{16}$	34.8	8.04	563	1035	1653	2413	3360				
$\times \frac{3}{8}$	4 T .6	9.56	666	1226	1958	2862	3987				
$\times \frac{7}{16}$	48.0	II. 04	765	1411	2255	3298	4595				
$\times \frac{1}{2}$	54.4	12.48	858	1586	2538	3715	5179				
$\times \frac{9}{16}$	60.8	13.96	955	1767	2831	4145	5782				
$\times \frac{5}{8}$	67.2	14.68	1000	r853	2969	4350	6069				
$6 \times 4 \times \frac{3}{8}$	49.2	II. 80		1496	2394	3504	4887	6431			
$\times \frac{7}{16}$	57.2	13.64		1623	2759	4041	5638	742 I			
$\times \frac{1}{2}$	64.8	15.48	- .	1944	3118	4570	6379	8400			
$\times \frac{9}{16}$	72.4	17.32		2167	3478	5101	7123	9382			
$\times \frac{5}{8}$	80.0	18.44		2300	3694	5419	7569	9972			
$\times \frac{11}{16}$	87.2	20.12		2496	4013	5892	8234	10852			
$\times \frac{3}{4}$	94.4	21.76		2689	4327	6357	8887	11717			
${ }_{6} 6 \times 4 \times \frac{3}{8}$	49.2	11.80		1278	2105	3145	4454	5927			
言 $\times \frac{7}{16}$	57.2	13.64		1471	2426	3626	5137	6839			
$\frac{5}{5}$	64.8	15.48	- .	1660	2740	4100	5812	7740			
\% $\quad \times \frac{9}{16}$	72.4	17.32		1849	3056	4575	6489	8644			
$\stackrel{\text { ® }}{\square} \times$ ¢	80.0	18.44		1963	3246	4861	6896	9189			
$\times 1$	87.2	20.12		2130	3526	5284	7501	9998			
\% $\times \frac{3}{4}$	94.4	21.76		2294	3801	5700	8095	10793			
$6 \times 6 \times \frac{3}{8}$	59.2	14.80		r689	2753	4084	5753	7627	9768	12176	17790
$\times \frac{7}{16}$	68.8	17.16		1950	3182	4723	6656	8828	11308	14097	20602
$\times \frac{1}{2}$	78.4	19.48		2205	3601	5348	7540	10003	12816	15980	23360
$\times \frac{9}{16}$	87.6	21.80		2453	4011	5962	8412	11164	14308	${ }_{17845}$	26096
$\times 5$	96.8	23.44		2629	4302	6397	9028	11984	${ }_{15362}$	${ }_{19163}$	28028
$\times \frac{11}{16}$	106.0	25.60		2860	4684	6969	9839	13065	16751	20898	30575
$\times \frac{3}{4}$	II4.8	27.76	- .	3083	5056	7529	10636	14129	18121	22613	33097
$8 \times 8 \times \frac{1}{2}$	105.6	27.48					10178	${ }^{1} 3567$	17452	21831	32074
$\times \frac{9}{16}$	118.0	30.80		.			11382	15178	19528	24433	35905
$\times \frac{5}{8}$	130.8	33.44		.			12335	16452	21171	26492	38940
$\times \frac{11}{16}$	143.2	36.60		- .	- .		13471	17973	${ }^{2} 3134$	28953	42568
$\times \frac{3}{4}$	I55.6	39.76		- .	- .		14587	19470	25069	31384	46160
$\times 13$	168.0	42.84					${ }_{5} 5683$	20939	26967	33766	49676
$\times \frac{7}{8}$	180.0	45.92			- .		16774	22402	28858	36140	53183
$\times 15$	192.0	48.96		- .	- .		${ }_{17845}$	23840	30717	38476	56636
XI	20.40	52.00	.		.	.	18892	25250	32545	40775	60044

MOMENT OF INERTIA OF FOUR ANGLES

ABOUT AXIS BB, DEDUCTING THREE HOLES FOR EACH ANGLE
Three $\frac{7}{8}{ }^{\prime \prime}$ holes deducted for angles less than $\frac{5^{\prime \prime}}{\prime \prime}$ thick Three $\mathrm{I}^{\prime \prime}$ holes deducted for angles over ${ }^{9} \mathrm{~g}^{\prime \prime}$ thick

Size of Angles.	Total Section.		Back to Back of Angles in Inches.							
	Gross Weight.	Net Area.	$24 \frac{1}{1}$	$30 \frac{1}{1}$	$36 \frac{1}{4}$	42 $\frac{1}{2}$	$48 \frac{1}{2}$	$54 \frac{1}{2}$	60 $\frac{1}{2}$	$72 \frac{1}{2}$
$6 \times 6 \times \frac{3}{8}$	59.2	13.50	1546	2516	3730	5253	6963	8916	IIII2	16233
$\times \frac{7}{16}$	68.8	15.65	1785	2908	4313	6077	8057	10319	12863	18795
$\times \frac{1}{2}$	78.4	17.75	2016	3288	4880	6878	9122	11685	14568	21292
$\times \frac{9}{16}$	87.6	19.81	2237	3653	5426	7652	10153	13010	16224	23722
$\times \frac{5}{8}$	96.8	20.94	2359	3854	5725	8075	10716	13734	17129	25049
$\times \frac{11}{16}$	106.0	22.87	2567	4196	6237	8801	11683	14976	1868I	27326
$\times \frac{3}{4}$	114.8	24.76	2762	4522	6727	9499	126I4	16175	20182	29532
$8 \times 8 \times \quad \frac{1}{2}$	105.6	25.75	- .	- .		9549	12726	16366	20469	30067
$\times \frac{9}{16}$	118.0	28.81	-		- .	10661	142 II	18280	22868	33599
$\times \frac{5}{8}$	I 30.8	30.94	-	- .	-	11431	15240	19606	24529	36046
$\times \frac{11}{16}$	143.2	33.87	- •	- .	-	12486	16652	21427	26813	39412
$\times \frac{3}{4}$	I55.6	36.76		- .	-	13507	18022	23199	29037	42699
$\times \frac{13}{16}$	168.0	39.6I		- .	.	14523	19383	24956	31242	45953
$\times \frac{7}{8}$	180.0	42.42	- .	.	.	${ }^{1} 5519$	20719	26683	33410	49154
$\times \frac{15}{16}$	192.0	45.23	- .			16511	22050	28403	35570	52347
$\times \mathrm{I}$	204.0	48.00		- .	- .	${ }^{1} 7466$	23335	30069	37666	55453

		$+$		$\begin{aligned} & \operatorname{stan} \\ & t \text { are } \end{aligned}$	ack	ack tes	f flang	ABOU angles	OF AXIS	B, DE	A OF JCTING
	¢							less over es of pla	$\text { than } \frac{5_{8}^{\prime \prime}}{8}$ $\frac{9}{16^{\prime \prime}} \text { thi }$ $\text { ates } 2 \text { in }$	hick es le	width
3		$\frac{1}{4}$	$\frac{5}{16}$	$\frac{3}{8}$	$\frac{7}{16}$	$\frac{1}{2}$	$\frac{9}{16}$	$\frac{5}{8}$	16	$\frac{3}{4}$	
9	A	. 6	4.53	5.44	6.34	7.25	8.16	8.75	9.63	10.50	
9	181	10	390	472	554	637	722	780	863	948	
"	24 ${ }^{\frac{1}{4}}$	44	683	824	967	IIIO	1256	1354	1497	1641	
"	$30 \frac{1}{4}$	84	1058	1275	1494	1714	1936	2086	2304	2523	
10		4.13	$5 \cdot 56$	6.19	7.22	8.25	9.28	10.00	11.00	12.00	13.00
10	$18 \frac{1}{4}$	353	444	537	630	725	82 I	891	7	84	82
"	$24 \frac{1}{4}$	619	778	938	1100	1264	1429	1547	1711	1876	2042
	$30 \frac{1}{4}$	959	1204	1451	170	1950	2203	2384	2633	2884	3137
"	$36 \frac{1}{4}$	1374	1723	2075	2429	2786	3145	3400	3753	4108	65
12		5.13	6.4 I	7.6	8.97	10.25	11.53	12.50	13.75	15.00	16.25
12	$24 \frac{1}{4}$	769	9	I166	1367	${ }^{1} 570$	1775	1934	2138	${ }^{2} 345$	2553
،	$30 \frac{1}{4}$	1192	1496	1803	112	2423	2737	2979	3291	3605	392 I
	$36 \frac{1}{4}$	1707	2141	2578	3018	3461	3907	4250	4691	5 I 35	55^{81}
	42 $\frac{1}{2}$	2342	2936	3533	4134	4738	5346	5812	6412	7015	7622
"	481	3045	3816	4591	5370	6153	6940	7542	8317	9097	9880
14		6.13	7.66	9.19	10.72	12.25	13.78	15.00	16.50	18.00	19.50
14	$24 \frac{1}{4}$	919	II55	I 393	163	1876	2122	2321	2566	2813	63
،	$30 \frac{1}{4}$	1424	1788	2154	2524	2896	3271	3575	3949	4325	4705
،	$36 \frac{1}{4}$	2040	2559	308 I	3607	4136	4669	5100	5629	6i6I	6698
،	42 ${ }^{\frac{1}{2}}$	2798	3508	4222	4941	5663	6389	6975	7695	8419	9147
،	481 $\frac{1}{2}$	3639	4561	5487	6418	7353	8294	9050	9981	10916	II856
،	54 $\frac{1}{2}$	4590	5751	6917	8088	9264	10446	II 396	12564	1 3738	14916
"	60 $\frac{1}{2}$	5651	7079	8512	9951	II 396	12847	14012	15444	16883	18327
I6		7.13	8.91	$\underline{10.69}$	12.47	14.25	$\overline{16.03}$	17.50	19.25	21.00	22.75
16	$24 \frac{1}{4}$	1069	I 343	1620	1900	2183	2468	2708	29	3282	574
،	$30 \frac{1}{4}$	1657	2080	250	2936	3369	380	4171	4607	5046	5489
	$36 \frac{1}{4}$	2373	2977	3584	4196	4812	5432	5950	6567	7188	7814
	42 $\frac{1}{2}$	3255	4081	4912	5747	6587	7432	8137	8977	9822	10671
،	$48 \frac{1}{2}$	4233	5305	6383	7466	8554	9648	10559	11644	12735	13832
،	$54 \frac{1}{2}$	5339	6690	8046	9408	10777	12152	13295	14658	16027	17402
"	60 $\frac{1}{2}$	6574	8234	9901	I1576	13256	14944	16347	18018	19697	21382
18		8.13	10.16	12.19	14.22	16.25	$\overline{18.28}$	20.00	22.00	24.00	26.00
18	$36 \frac{1}{4}$	2706	3394	4087	4785	5487	6194	6800	7505	8215	8930
	$42 \frac{1}{2}$	3712	4654	5601	6554	7512	8476	9300	10259	11225	12195
،	$48 \frac{1}{2}$	4827	6050	7278	8513	9754	11002	12067	13308	14555	15808
	$54 \frac{1}{2}$	6089	7628	9175	10729	12289	13857	15195	16752	18317	19888
	60 $\frac{1}{2}$	7497	9390	11291	13200	15117	17042	18682	20592	22511	24437
"	$72 \frac{1}{2}$	10751	13461	1618I	18911	21649	24397	26737	2946I	32195	34937

TWO COVER PLATES

TWO HOLES FROM EACH PLATE

> d = distance back to back of flange angles
> $A=$ net area of two plates
> Two $\frac{7}{8}{ }^{\prime \prime}$ holes deducted for plates less than $\frac{5_{8}^{\prime \prime}}{}$ thick " $\mathrm{I}^{\prime \prime}$ " " " " over $\frac{9}{16}$ " thick

If 4 one-inch holes are deducted, use values of plates 2 inches less in width

Thickness of Plate in Inches.										
$\frac{7}{8}$	18	1	$1 \frac{1}{8}$	$1 \frac{1}{4}$	$1 \frac{3}{8}$	$1 \frac{1}{2}$	15	13	$1 \frac{7}{8}$	2
14.00	15.00	$\overline{\overline{16.00}}$								
1281	1382	1484								
2211	2380	2552								
3392	3649	3908					-			
4825	5187	5552								
17.50	18.75	20.00	22.50	25.00	27.50	30.00				
2763	2975	3190	3625	4068	4520	4980				
4240	4561	4885	5540	6205	688I	7567				
6031	6484	6940	7860	8793	9738	10695				
8232	8846	9.463	10708	11967	13240	14527				
10667	11458	12253	13855	15473	$\underline{17107}$	18757				
21.00	22.50	24.00	27.00	30.00	33.00	36.00	39.00	42.00	45.00	$\overline{48.00}$
3316	3570	3828	4350	4881	5423	5975	6538	7111	7694	8287
5088	5473	5862	6648	7446	8257	9080	9916	10765	11626	12499
7237	7781	8328	9432	1055I	11685	12833	I 3997.	15173	16367	17575
9879	10615	11356	12850	14360	15887	17432	18993	20572	22168	23782
12800	13750	14704	16626	18568	20528	22508	24507	26526	28564	30622
16100	17289	18484	20889	23315	25763	28232	30723	33235	35769	38326
19778	21234	22696	25637	28603	31591	34604	37640	40701	43785	46894
24.50	26.25	28.00	31.50	35.00	38.50	42.00	$45 \cdot 50$	49.00	52.50	56.00
3868	4165	4466	5074	5695	6327	6971	7627	8295	8976	9668
5935	6385	6839	7756	8687	9633	10594	11569	12558	13563	14582
8444	9077	9716	11004	12310	13632	14972	16329	17703	19095	20504
I 1525	12384	13248	14991	16753	18535	20337	22159	24001	25863	27745
14934	16041	17154	19397	21662	23949	26259	28591	30946	33324	35725
18783	20170	21564	24370	27201	30056	32937	35843	38774	4173I	44713
23074	24772	26478	29910	33369	36856	40371	43913	47484	51082	54709
28.00	30.00	32.00	36.00	40.00	44.00	48.00	52.00	56.00	60.00	64.00
9650	10374	11103	12576	14068	${ }^{1} 55^{80}$	17111	18662	20232	21823	23433
13172	14154	15141	17133	19146	21183	23242	25324	27429	29557	31708
17067	18333	19605	22168	24756	27370	30010	32676	35367	38084	40828
21467	23052	24645	27852	31086	34350	37642	40963	44313	47692	51100
26370	28312	30261	34183	38136	42121	46138	50187	54267	58379	62524
37689	40450	4322 I	48790	54396	60040	65722	71442	77199	82994	88828

(107)

TABLE 51 (Continued)

TWO COVER PLATES

TWO HOLES FROM EACH PLATE

$\mathrm{d}=$ distance back to back of flange angles $A=$ net area of two plates
Two $\frac{7}{8}{ }^{\prime \prime}$ holes deducted for plates less than $\frac{5}{8 \prime \prime}$ thick
If 4 one-inch holes are deducted use values of plates ${ }^{\text {PV }}$

Thickness of Plate in Inches.										
$\frac{7}{8}$	$\frac{15}{16}$	1	$1 \frac{1}{8}$	$1 \frac{1}{4}$	1 $\frac{3}{8}$	$1 \frac{1}{2}$	15	$1{ }^{3}$	17 $\frac{7}{8}$	2
31.50	33.75	36.00	40.50	45.00	49.50	54.00	58.50	63.00	67.50	72.00
10856	11671	12491	14148	15	17	19250	20994	22761	4550	62
14818	15923	17034	19274	21540	23831	26147	28489	30857	$33^{2} 51$	35671
19201	20625	22056	24939	27851	30792	33761	36760	39788	42845	45931
	259	27726	$3^{1} 333$	34972	38644	42347	46083	49852	53653	87
29666	31	34	38456	42903	47387	51905	56460	61050	65677	70339
42400	45507	48624	54889	61196	67545	73937	80372	86849	93368	9993 I
35.00	37.50	40.00	45.00	50.00	55.00	60.00	65.00	70.00	75.00	80.00
12062	129		15		19475		23327	25290		1
16465	176	18926	21416	23933	26478	29	31655	34286	36946	34
21334	22916	245	27	30945	34213	37512	40844	44208	47605	51034
	28815	308		38858	42937	4705^{2}	51203	55391	59614	63874
32	35390	37	427	47	52	57672	62733	67833	72974	78154
47111	50	54026	60987	6	75	82152	89302	96498	103742	4
38	41.25	44.00	49	55.00	60.50	66.00	71	77.00	82.50	88.00
13	14265	15267	17					8		
18111	19461	20819	2355	26	29	31958	34820	37714	O	05
23	2520	26957	30	34040	37	41264	44928	48629	52337	56145
29517	31697	33887	38	42	47231	51758	56324	60930	65576	70269
36259	38929	41609	47	52437	57917	63440	69006	74616	80271	85977
51823	55619	59429	67	74795	82555	90368	98232	106148	114116	122145
42.00	45	48	54.00	60	66	72.00	7	84.00	90.0	.00
19	21							41143	4334	
25	27499	29407	33	371	4	45015	49013	53050	57125	61241
32200	34578	36967	41777	466	51525	56463	61444	66469	71537	76649
39555	42467	45391	51274	57204	63182	69207	75279	81400	87568	93785
56534	60676	64831	73185	81594	90060	98583	107162	115798	124490	133241
45.	48.7	52.00	58.50	65	71.	78.00	84	91.0	97.5	
				31113			41151			
27	29791	31858	36023	4	44476	48766	53097	57470	61886	66344
34883	37460	40048	$45^{2} 5^{8}$	50515	55818	61168	66564	72007	77498	83036
42852	46006	49174	55548	61971	68447	74974	81552	88183	94865	101600
61245	65732	70234	79284	88394	97565	106798	116092	125447	134864	144344
52.50	56.25	60.00	67	75.00	82.50	90.00	97.50	105.00	112.	
24697	26538	28389	32123			43578	47481	51428	5541	45°
32001	34374	36759	41565	46418	51319	56268	61265	66311	71406	76550
40250	43223	46209	5222 I	58287	64405	70578	76805	83085	89420	95810
49444	53084	56739	64093	71505	78977	86508	94099	IOI749	109459	117230
70667	75844	81039	9148I	101993	112575	123228	$13395{ }^{2}$	144746	155613	166550

TIMBER COLUMNS, BEAMS, AND FLOORING

STRENGTH OF TIMBER

The following data on strength of timber, pages ino to II4, are taken from the Report of a Committee of the American International Association of Railway Superintendents of Bridges and Buildings on " Strength of Bridge and Trestle Timbers." The report was made in 1895.

The test data at hand and the summary of criticisms of leading authorities seem to indicate the general correctness of the following conclusions:
(I) Of all structural materials used for bridges and trestles, timber is the most variable as to the properties and strength of the different pieces classed as belonging to the same species; hence it is impossible to establish close and reliable limits for each species.
(2) The various names applied to one and the same species in different parts of the country lead to great confusion in classifying or applying results of tests.
(3) Variations in strength are generally directly proportional to the density or weight of timber.
(4) As a rule, a reduction of moisture is accompanied by an increase in strength; in other words, seasoned lumber is stronger than green lumber.
(5) Structures should be, in general, designed for the strength of green or moderately seasoned lumber of average quality and not for a high grade of well-seasoned material.
(6) Age and use do not destroy the strength of timber unless decay or season checking takes place.
(7) Timber, unlike materials of a more homogeneous nature, as iron and steel, has no well-defined limit of elasticity. As a rule, it can be strained very near to the breaking point without serious injury, which accounts for the continuous use of many timber structures with the material strained far beyond the usually accepted safe limits. On the other hand, sudden and frequently inexplicable failures of individual sticks at very low limits are liable to occur.
(8) Knots, even when sound and tight, are one of the most objectionable features of timber, both for beams and struts. The full-size tests of every experimenter have demonstrated not only that beams break at knots, but that invariably timber struts will fail at a knot or owing to the proximity of a knot, by reducing the effective area of the stick and causing curly and cross-grained fibers, thus exploding the old practical view that sound and tight knots are not detrimental to timber in compression.
(9) Excepting in top logs of a tree or very small and young timber, the heart wood is, as a rule, not as strong as the material farther away from the heart. This becomes more generally apparent, in practice, in large sticks with considerable heart wood cut from old trees in which the heart has begun to decay or been wind shaken. Beams cut from such material frequently season check along middle of beam and fail by longitudinal shearing.
(io) Top logs are not as strong as butt logs, provided the latter have sound timber.
(ii) The results of compression tests are more uniform and vary less for one species of timber than any other kind of test; hence, if only one kind of test can be made, it would seem that a compressive test will furnish the most reliable comparative results.
(12) Long timber columns generally fail by lateral deflection or "buckling" when the length exceeds the least cross-sectional dimensions of the stick by 20 ; in other words, when the column is longer than 20 diameters. In practice the unit stress for all columns over 15 diameters should be reduced in accordance with the various rules and formulæ established for long columns.
(13) Uneven end bearings and eccentric loading of columns produce more serious disturbances than are usually assumed.
(14) The tests of full-size long compound columns, composed of several sticks bolted and fastened together at intervals, show essentially the same ultimate unit resistance for the compound column as each component stick would have if considered as a column by itself.
(15) More attention should be given in practice to the proper proportioning of bearing areas; in other words, the compressive bearing resistance of timber with and across grain, especially the latter, owing to the tendency of an excessive crushing stress across grain to indent the timber, thereby destroying the fiber and increasing the liability to speedy decay, especially when exposed to the weather and the continual working produced by moving loads.

The aim of your committee has been to examine the conflicting test data at hand, attributing the proper degree of importance to the various results and recommendations, and then to establish a set of units that can be accepted as fair average values, as far as known to-day, for the ordinary quality of each species of timber and corresponding to the usual conditions and sizes of timbers encountered in practice. The difficulties of executing such a task successfully can not be overrated, owing to the meagerness and frequently the indefiniteness of the available test data, and especially the great range of physical properties in different sticks of the same general species, not only due to the locality where it is grown, but also to the condition of the timber as regards the percentage of moisture, degree of seasoning, physical characteristics, grain, texture, proportion of hard and soft fibers, presence of knots, etc., all of which affect the question of strength.

Your committee recommends, upon the basis of the test data at hand at the present time, the average units for the ultimate breaking stresses of the principal timbers used in bridge and trestle constructions shown in the accompanying table.

Attention should also be called to the necessity of examining the resistance of a beam to longitudinal shearing along the neutral axis, as beams under transverse loading frequently fail by longitudinal shearing in the place of transverse rupture.

In addition to the ultimate breaking unit stress the designer of a timber structure has to establish the safe allowable unit stress for the species of timber to be used. This will vary for each particular class of structures and individual conditions. The selection of the proper "factor of safety" is largely a question of personal judgment and experience, and offers the best opportunity for the display of analytical and practical ability on the part of the designer. It is difficult to give specific rules. The following are some of the controlling questions to be considered:

The class of structure, whether temporary or permanent, and the nature of the oading, whether dead or live : if live, then whether the application of the load is accompanied by severe dynamic shocks and pounding of the structure. Whether the assumed loading for calculations is the absolute maximum, rarely to be applied in practice, or a possibility that may frequently take place. Prolonged heavy, steady loading, and also alternate tensile and compressive stresses in the same place will call for lower averages. Information as to whether the assumed breaking stresses are based on full-size or small-size tests, or only on interpolated values, averaged from tests of similar species of timber, is valuable in order to attribute the proper degree of importance to recommended average values. The class of timber to be used and its condition and quality. Finally, the particular kind of strain the stick is to be subjected to and its position in the structure with regard to its importance and the possible damage that might be caused by its failure.

In order to present something definite on this subject, your committee presents the accompanying table, showing the average safe allowable working unit stresses for the principal bridge and trestle timbers, prepared to meet the average conditions existing in railroad timber structures, the units being based upon the ultimate breaking unit stresses recommended by your committee and the following factors of safety, viz.:
Tension with and across grain 10
Compression with grain 5
Compression across grain 4
Transverse rupture, extreme fiber stress 6
Transverse rupture, modulus of elasticity 2
Shearing with and across grain 4
TABLE 52
AVERAGE SAFE ALLOWABLE WORKING UNIT STRESSES IN POUNDS PER SQUARE INCH
RECOMMENDED BY THE COMMITTEE ON "STRENGTH OF BRIDGE AND TRESTLE TIMBERS," AMERICAN ASSOCIATION OF RAILWAY SUPERINtendents of bridges and buildings, fifth annual convention, new orleans, october, i 895

Kind of Timber.	Tension.		Compression.			Transverse Rupture.		Shearing.	
	With Grain.	Across Grain.	With Grain.		Across Grain.	Extreme Fiber Stress.	Modulus of Elasticity.	With Grain.	Across Grain.
			End Bearing.	Columns under 15 diameters.					
Factor of safety .	10	10	5	5	4	6	2	4	4,
White oak .	1000	200	1400	900	500	1000	550000	200	1000
White pine	700	50	1100	700	200	700	500000	100	500
Southern, longleaf, or Georgia yellow pine . .	1200	60	1600	1000	350	1200	850000	150	1250
Douglas, Oregon, and Washington fir or pine:									
Yellow fir	1200	-••	1600	1200	300	1100	700000	150	-•
Red fir	1000	- •	-	-	- •	800	- •	- .	-•
Northern or shortleaf yellow pine	900	50	1200	800	250	1000	600000	100	1000
Red pine	900	50	1200	800	200	800	600000	- •	-•
Norway pine.	800	. .	1200	800	200	700	600000
Canadian (Ottawa) white pine . . .	1000	1000	. . .	- •	- •	100	. .
Canadian (Ontario) red pine	1000	1000	- • •	800	700000	100	-
Spruce and Eastern fir . .	800	50	1200	800	200	700	600000	100	750
Hemlock	600	. . .	- •	800	150	600	450000	100	600
Cypress	600	-••	1200	800	200	800	450000	- •	- .
Cedar.	800	. . .	1200	800	200	800	350000	-	400
Chestnut .	900	-••	. . .	1000	250	800	500000	150	400
California redwood.	700	-••	- • •	800	200	750	350000	100	-
California spruce		800	. . .	800	600000

recommended by the committee on "strength of bridge and trestle timbers," american association of railway super-

	边.	
	뎔령	
	\% ${ }^{4}$	
	数: ${ }^{\text {a }}$	
	도ㅇㅕㅕ영	O응 운

(114)

SAFE LOADS FOR WOOD COLUMNS IN POUNDS PER'SQUARE INCH OF CROSS-SECTION

The following safe loads are obtained from the formula

$$
P=F \frac{700+15 c}{700+15 c+c^{2}},
$$

where $P=$ allowable working stress in lbs. per sq. in. for long columns.
$F=$ allowable working stress in lbs. per sq. in. for short columns.
$c=$ unbraced length in inches divided by least cross-sectional dimension in inches.

$\mathrm{V}_{\text {alues or }} \mathrm{F}$.						Values of F.					
c	700	800	900	1000	1200	C	700	800	900	1000	1200
1	699	799	899	999	1198	2 I	488	558	627	697	837
2	696	796	895	995	1193	22	476	544	612	680	8 r 6
3	692	790	889	988	1186	23	465	531	598	664	797
4	686	783	88I	979	1175	24	454	518	583	648	777
5	678	775	872	969	1162	25	443	506	569	632	759
6	669	765	861	956	1148	26	43^{2}	494	555	617	741
7	660	754	848	943	1131	27	422	482	542	603	723
8	649	742	835	928	1113	28	412	471	529	588	706
9	638	729	820	912	1094	29	402	460	517	574	689
10	626	716	805	895	1074	30	393	449	505	561	673
11	614	702	790	877	1053	32	375	428	482	535	642
12	602	688	773	859	1031	34	358	409	460	511	614
13	589	673	757	841	1009	36	342	391	440	489	587
14	576	658	741	823	987	38	328	374	42 I	468	56x
15	563	644	724	804	965	40	314	359	403	448	538
16	550	629	707	786	943	42	301	344	387	430	516
17	537	614	691	768	921	44	289	330	371	413	495
18	525	600	675	750	900	46	278	317	357	397	476
19	512	585	659	732	878	48	267	305	343	38 I	45^{8}
20	500	571	643	714	857	50	257	294	330	367	441
						60	215	246	277	308	369
						70	184	211	237	263	316

Example 1. Required the size of a Southern Pine column capable of supporting a direct load of 40,000 pounds, the unbraced length of the column being 16 feet. Solution: Assuming an $8 \times 8, c=$ $192 \div 8=24, F=1000$ for Southern Pine. From the above table for these values of c and $F, P=648$. Let $\stackrel{P}{\prime}^{\prime}=$ load applied in pounds per square inch, $A=$ area of cross-section of column in square inches, $W=$ total load applied in pounds, then $P^{\prime}=W \div A=40,000 \div 64=625$. Since the load applied is less than the allowable load, the column is safe.

Example 2. Required the size of a Southern Pine column capable of supporting a load of 40,000 pounds, so applied as to produce a bending moment of 18,000 inch-pounds, the unbraced length of the column is 16 feet. Solution: Assuming an $8 \times 10, c=24, F=1000, P=648, A=80$. Placing the column so that the 10 -inch dimension will be effective in resisting bending, $I=667, e=5$. Then $P^{\prime}=\frac{W}{A}+\frac{M e}{I}=\frac{40,000}{80}+\frac{18,000 \times 5}{667}=635$. Since P^{\prime} is less than P, the column is safe.

TABLE 55

SAFE LOADS (UNIFORMLY DISTRIBUTED) FOR BEAMS $\mathbf{1}^{\prime \prime}$ THICK

Based on extreme fiber stress of $\mathbf{1 0 0 0}$ pounds per square inch. The table is for total uniform loads in pounds, for beams one inch thick. The values are for an actual depth of $\frac{1}{4}$ inch less than the nominal depth, or a 4 -inch beam is reduced to $3^{\frac{3}{4}}$ inches deep.

	Nominal Depth of Beam.													
	4	5	6	7	8	9	10	12	14	16	18	20	22	24
4	391	627	918	1265	1668	2127	2640	3835	5268	6891	8752	10835	I3I4I	15668
5	313	501	735	1012	1334	1701	2112	3068 .	4201	5512	7000	8668	10512	12535
6	260	418	612	844	1112	1418	1760	2557	3512	4594	5834	7224	8760	10446
7	223	35^{8}	525	723	953	1215	1508	2191	3001	3937	5001	6191	7509	8953
8	195	313	459	633	834	1063	1320	1918	2634	3446	4375	5418	6570	7834
9	174	279	408	563	741	944	1173	1704	2341	3063	3889	4815	5840	6964
10	156	251	367	506	667	851	1056	1534	2100	2756	3500	4334	5256	6267
II	142	228	334	46	607	774	960	1394	1910	2505	3182	3940	4778	98
12	130	209	306	422	556	709	880	1278	1756	2297	2917	3612	4380	5223
13	120	193	283	389	513	654	812	1180	1616	2120	2692	3333	4043	4821
14	112	179	262	362	477	608	754	1095	1500	1968	2500	3095	3754	4477
15	104	167	245	338	445	567	704	$\mathrm{I}_{5} \mathrm{O} 23$	1400	1838	2333	2889	3504	4178
16	98	157	230	316	417	532	660	959	1317	1723	2188	2709	3285	3917
17		147	216	298	393	500	621	902	1236	1621	2059	2549	3092	3687
18		I 39	204	281	37 I	472	587	852	1170	1531	1944	2408	2920	3482
19		132	193	266	35 I	448	556	807	1106	1451	1842	2281	2767	3299
20		125	184	253	334	425	528	767	1054	1378	1750	2167	2628	3134
2 I		.	175	241	3	405	503	730	1000	1312	1667	2063	2503	2984
22		.	167	230	303	387	480	697	955	1253	1591	1970	${ }^{2} 389$	2849
23			160	220	290	370	459	667	917	1198	1522	1884	2286	2724
24		- .	153	211	278	354	440	639	878	II49	1458	1806	2190	2611
25		- .	. .	203	267	340	423	614	840	1103	1400	1734	2102	2507
26			.	195	257	327	406	590	808	1060	1346	1667	2022	2411
27		- -	.	187	247	315	391	568	780	1021	1296	1605	1947	2321
28	.		- .	181	238	304	377	548	750	984	1250	1548	1877	2238
29	- .	-		. .	${ }^{2} 30$	293	364	529	724	950	1207	1494	1812	2164
30					222	283	352	511	700	919	1167	1444	$175{ }^{2}$	2089

To obtain the safe load concentrated at the center of beam, divide the safe load given in the above table by two.
Based on an extreme fiber stress of 1000 pounds per square inch. The table is for total uniform loads in pounds, for beams of the sizes and spans given below. The values are for an actual depth of $\frac{1}{6}$ inch less than the nominal depth, or a 4 inch beam is taken as actually $3^{\frac{8}{3}}$ inches deep.

Span.	h	4	6		8			10			12			
	b	2	2	3	2	3	4	2	3	4	2	3	4	6
4		780	1840	2750	3340	5000	6670	5280	7920	10560	7670	II5 10	15340	23010
5		630	1470	2210	2670	4000	5340	4220	6340	8450	6140	9200	12270	18410
6		520	1220	1840	2220	3340	4450	3520	5280	7040	5110	7670	10230	15340
7		450	1050	1580	I910	2860	3810	3020	4520	6030	4380	6570	8760	13150
8		39°	920	1380	1670	2500	3340	26.40	3960	5280	- 3840	5750	7670	I1510'
9		350	820	1220	1480	2220	2960	2350	3520	4690	3410	5110	6820	10220
10		310	730	1100	1330	2000	2670	2110	3170	4220	3070	4600	6140	9200
II		280	670	1000	1210	1820	2430	1920	2880	$3^{84} 40$	2790	4180	5580	8360
12		260	610	920	1110	1670	2220	1760	2640	3520	2560	3830	5110	7670
13		240	570	850	1030	I540	2050	1620	2440	3250	2360	3540	4720	7080
14		220	520	790	950	1430	1910	1510	2260	3020	2190	3290	4380	6570
15		210	490	740	890	1340	1780	1410	2110	2820	2050	3070	4090	6140
16		200	460	690	830	1250	1670	1320	1980	2640	1920	2880	3840	5750
17	-	. .	430	650	790	1180	1570	1240	I860	2480	1800	2710	3610	5410
18	.	-	410	610	740	1110	1480	1170	1760	2350	1700	2560	3410	5110
19		-	390	580	700	1050	1400	IIIO	1670	2220	1610	2420	3230	4840
20	.	.	370	550	670	1000	I 340	1060	1580	2110	1530	2300	3070	4600
21	-	- •	350	530	640	950	1270	1010	1510	2010	1460	2190	2920	4380
22	-	-	330	500	610	910	1210	960	1440	1920	1390	2090	2790	4180
23	.	. .	320	480	580	870	1160	920	1380	1840	1330	2000	2670	4000
24	.	. .	310	460	560	830	IIIO	880	1320	1760	1280	1920	2560	3830
25	-	.	- -	-	530	800	1070	850	1270	1690	1230	1840	2460	3680
26	-	-	- • •	- • -	510	770	1030	810	1220	1620	I 180	1770	2360	3540
27		- •	-	490	740	990	780	1170	I560	1140	1700	2270	3410
28	-	- •	- •	- • •	480	710	950	750	1130	1510	1100	I640	2190	3290
29	-	- .	-	- .	460	690	920	730	1090	1460	1060	1590	2120	3170
30	.	- \cdot	-	-	440	670	890	700	1060	1410	1020	1530	2040	3070

(See Note at foot of Table on page 118.)

Span.	h	14				16				18			20	22	24
	b	2	3	4	6	2	3	4	6	3	4	6	6	6	6
4		10540	15800	21070	31610	13780	20670	27560	41350	26260	35010	52510	65010	78850	94010
5		8400	12600	16800	25210	11020	16540	22050	33070	21000	28000	42000	52010	63070	75210
6		7020	10540	14050	21070	9190	I 3780	18380	27560	17500	23340	35000	43340	52560	62680
7		6000	9000	12000	18010	7870	I1810	15750	23620	15000	20000	30010	37150	45050	53720
8		5270	7900	10540	15800	6890	10340	13780	20680	13130	17500	26250	32510	39420	47000
9		4680	7020	9360	14050	6130	9190	12250	18380	11670	15560	23330	28890	35040	41780
10		4200	6300	8400	12600	5510	8270	11020	16540	10500	14000	21000	26000	31540	37600
II		3820	5730	7640	11460	5010	7520	10020	15030	9550	12730	19090	23640	28670	34190
12		3510	5270	7020	10540	4590	6890	9190	13780	8750	11670	17500	21670	26280	31340
13		3230	4850	6460	9700	4240	6360	8480	12720	8080	10770	16150	20000	24260	28930
14		3000	4500	6000	9000	3940	5900	7870	II8IO	7500	10000	15000	18570	22520	26860
15		2800	4200	5600	8400	3680	5510	7350	11030	7000	9330	14000	17330	21020	25070
16		2630	3950	5270	7900	3450	5170	6890	10340	6560	8750	13130	16250	19710	23500
17		2470	3710	4940	7420	3240	4860	6480	9730	6180	8240	12350	15290	18550	22120
18		2340	3510	4680	7020	3060	4590	6120	9190	5830	7780°	11660	14450	17520	20890
19		2210	3320	4420	6640	2900	4350	5800	8710	5530	7370	11050	13690	16600	19790
20		2110	3160	4220	6320	2760	4130	5510	8270	5250	7000	10500	I 3000	15770	18800
21		2000	3000	4000	6000	2620	3940	5250	7870	5000	6670	10000	12380	15020	17900
22		1910	2870	3820	5740	2510	3760	5010	7520	4770	6360	9550	II820	14330	17090
23		1830	2750	3670	5500	2400	3590	4790	7190	4570	6090	9130	11300	13720	
24		1760	2630	3510	5270	2300	3450	4600	6890	4370	5830	8750	10840	I 3140	15670
25		1680	2520	3360	5040	2210	3310	4410	6620	4200	5600	8400	10400	12610	15040
26		1620	2420	3230	4850	2120	3180	4240	6360	4040	5380	8080	10000	12130	14470
27		1560	2340	3120	4680	2040	3060	4080	6130	3890	5180	7780	9630	11680	I 3930
28		1500	2250	3000	4500	1970	2950	3940	5900	3750	5000	7500	9290	11260	13430
29		1450	2170	2900	4340	1900	2850	3800	5700	3620	4830	7240	8960	10870	12980
30		1400	2100	2800	4200	1840	2760	3680	5510	3500	4670	7000	8660	10510	12530

[^2]TABLE 57

	Nominal Depth of Beam.													
	4	5	6	7	8	9	10	12	14	16	18	20	22	24
600	117	188	276	380	501	638	79^{2}	${ }^{1151}$	${ }^{1} 576$	2067	2626	3251	3942	4701
700	137	219	321	443	584	744	924	${ }^{1} 342$	1838	2412	3063	3792	4599	5484
750	146	235	344	475	626	798	990	1438	1969	2584	3282	4063	4928	5876
800	${ }_{1} 56$	251	367	506	667	851	1056	1534	2101	2756	3501	4334	5256	6267
1000	195	313	459	633	834	1063	1320	1918	2626	3445	4376	5418	6570	7834
1100	215	345	505	696	918	1170	1452	2109	2888	3790	48 I 3	5959	7227	8618
1200	234	376	551	759	1001	1276	1584	2301	3151	4134	5251	6501	7884	9401

Example. Given a bending moment of 7200 foot-pounds, it is required to find the depth of a Southern Pine beam of 2 inches thickness to safely sustain this bending. Safe extreme fiber stress of Southern Pine is 1200 pounds per square inch. $7200 \div 2=3600$, which is the required bending moment for beam of 1 inch
thickness. Opposite 1200 in the above table under 16 inch depth, we obtain 4134 , which is the next higher value. Therefore a 2×16 is safe, if determined by extreme fiber stress.
(I 19)

	Load in Pounds per Square Foot.															
	15	20	25	30	40	50	60	70	75	80	100	125	I 50	175	200	250
4	60	80	- 100	120	160	200	240	280	300	320	400	500	600	700	800	1000
5	94	125	156	188	250	313	375	438	469	500	625	781	938	1094	1250	1563
6	I 35	I80	225	270	360	450	540	630	675	720	900	I 125	I350	I575	1800	2250
7	184	245	306	368	490	613	735	858	919	980	1225	1531	I840	2144	2450	3060
8	240	320	400	480	640	800	960	1120	1200	1280	1600	2000	2400	2800	3200	4000
9	30	405	506	608	810	IOI3	1215	1418	1519	1620	2025	2531	3038	3544	4050	5063
10	375	500	625	750	1000	1250	1500	1750	1875	2000	2500	3125	3750	4375	5000	6250
I I	454	605	756	908	I210	1513	1815	2118	2269	2420	3025	3781	4538	5294	6050	7563
I2	540	720	900	1080	I440	I800	2160	2520	2700	2880	3600	4500	5400	6300	7200	9000
13	634	845	1056	I 268	1690	2113	2535	2958	3169	3380	4225	5281	6338	7394	8450	10563
I4	735	980	1225	1470	1960	2450	2940	3430	3675	3920	4900	6125	7350	8575	9800	12250
15	844	1125	1406	I688	2250	2813	3375	3938	4219	4500	5625	7031	8438	9844	11250	14063
I	960	1280	1600	1920	2560	3200	3840	4480	4800	5120	6400	8000	9600	I 1200	12800	16000
17	1084	1445	I806	2168	2890	36 I 3	4335	5058	5419	5780	7225	9031	10838	12644	I4450	18063
18	1215	1620	2025	2430	3240	4050	4860	5670	6075	6480	8100	IOI25	12150	14175	16200	20250
19	I 354	1805	2256	2708	3610	45 I 3	5415	6318	6769	7220	9025	II28I	13538	15794	18050	22563
20	1500	2000	2500	3000	4000	5000	6000	7000	7500	8000	10000	12500	15000	I7500	20000	25000
21	1654	2205	2756	3308	4410	$55^{1} 3$	6615	7718	8269	8820	11025	13781	16538	19294	22050	27563
22	1815	2420	3025	3630	4840	6050	7260	8470	9075	9680	12100	I5125	18150	21175	24200	30250
23	1984	2645	3306	3968	5290	6613	7935	9258	9919	10580	13225	1653I	19838	23144	26450	33063
24	2160	2880	3600	4320	5760	7200	8640	10080	10800	I 1520	14400	18000	21600	25200	28800	36000
25	2344	3125	3906	4688	6250	7813	9375	10938	II7I9	12500	15625	1953I	23438	27344	31250	39063
26	2535	3380	4225	5070	6760	8450	IOI40	11830	12675	I3520	I6900	21125	25350	29575	33800	42250
27	2734	3645	4556	5468	7290	9113	10935	12758	13669	14580	18225	22781	27338	31894	36450	45563
28	2940	3920	4900	5880	7840	9800	II760	13720	14700	15680	19600	24500	29400	34300	39200	49000
29	3154	4205	5256	6308	8410	10513	126I5	14718	15769	16820	21025	2628I	31538	36794	42050	52563
30	3375	4500	5625	6750	9000	II250	13500	15750	16875	18000	22500	28125	33750	39375	45000	56250

THICKNESS OF WOOD FLOORING

Based on a safe extreme fiber stress of 1000 pounds per square inch, the flooring assumed in simple spans. To the thickness given below add $\frac{l^{\prime \prime}}{}$ to obtain the nominal thickness.

	Uniform Load in Pounds per Square Foot.															
	15	20	25	30	40	50	60	70	75	80	100	125	150	175	200	250
12	. 11	. 12	4	. 5	17	. 19	. 21	.23	. 24	. 25	. 27	. 31	. 34	$\cdot 36$	$\cdot 39$. 43
16	. 14	. 16	. 18	. 20	. 23	. 26	. 28	-31	$\cdot{ }^{2}$. 33	$\cdot 37$. 41	. 45	. 48	. 52	. 58
18	.16	. 8	. 21	. 23	. 26	. 29	. 32	. 34	$\cdot 36$	$\cdot 37$. 41	. 46	. 50	. 54	. 58	. 65
24	. 21	. 25	. 27	-30	-35	-39	$\cdot 42$. 46	. 47	. 49	$\cdot 55$.61	. 67	. 72	. 77	. 87
30	. 27	.31	- 34	$\cdot 3^{8}$. 43	. 48	. 53	. 57	. 59	. 61	. 68	. 77	. 84	.91	. 97	1.08
36	. 32	. 37	. 41	-45	$\cdot 5^{2}$. 58	. 64	. 69	. 71	. 73	. 82	. 92	1.01	1.09	1.16	1.30
42	$\cdot 37$. 43	48	. 53	.61	. 68	. 74	. 80	. 83	. 86	. 96	1.07	1.17	1.27	I. 36	1.52
48	. 42	. 49	$\cdot 55$. 60	. 69	. 77	. 85	. 92	. 95	. 98	1.10	1.22	1.34	I. 45	I. 55	1. 73
60	. 53	.61	. 68	.75	. 87	. 97	1.06	I. 15	1.19	1.22	1. 37	I. 53	ז. 68	1.81	1.94	2.17
.72	. 64	. 73	. 82	. 90	1.04	I.16	1.27	I. 37	1. 42	I. 47	1.64	1. 84	2.01	2.17	2.32	2.60
84	. 74	. 86	. 96	1.05	1.21	I. 36	1.48	I. 60	1. 66	1.71	1.92	2.14	2.35	2.54	2.71	3.03
96	. 85	. 98	I.	1.20	1.39	1.55	1.70	1.83	1.90	1.96	2.19	2.45	2.68	2.90	3.10	3.46

To obtain the required thickness for loads concentrated at center of span, divide the concentrated load per foot of width of flooring by one-half of the span in feet; the resulting value is the equivalent uniform load in pounds per square foot.

The above values were obtained from the following formula:
Let $h=$ thickness of flooring in inches,
$w=$ uniform load in pounds per square foot,
$l=$ simple span in inches,
$R=$ safe extreme fiber stress in pounds per square inch $=1000$ in above table.
Then

$$
h=\sqrt{\frac{l w}{192000}} .
$$

THIS BOOK IS DUE ON THE LAST DATE STAMPED BELOW

AN INITIAL FINE OF 25 CENTS WILL BE ASSESSED FOR FAILURE TO RETURN THIS BOOK ON THE DATE DUE. THE PENALTY WILL INCREASE TO 50 CENTS ON THE FOURTH DAY AND TO \$1.00 ON THE SEVENTH DAY OVERDUE.

$\frac{\text { pwoel }}{\text { wer net }}$

[^0]: * Equation (a) is usually written

 $$
 \left(a^{\prime}\right) B=\frac{w L^{2}}{8}-\frac{w x^{2}}{2},
 $$

[^1]: * It is seen from the tables that the value of two plates $1 \frac{1}{4}$ inches thick is greater than twice the value of two $\frac{5}{8}$-inch plates with the same distance back to back, since the value of e is greater for the thicker plates; the values should therefore be taken as the value of two plates of the total thickness of each flange plate.

[^2]: To obtain the safe load concentrated at the center of a beam, divide the safe load given in the above table by two. extreme fiber stress used in the table and divide this product by the required extreme fiber stress. The beam required to support the load thus obtained may be read directly from the table. A beam having a span of io feet, supporting a total uniform load of 2400 pounds, at an extreme fiber stress of 800 pounds per square inch is determined as follows:

